This paper introduces scour physics-informed neural networks (SPINNs), a hybrid physics-data-driven framework for bridge scour prediction using deep learning. SPINNs are developed based on historical scour monitoring data and integrate physics-based empirical equations into neural networks as supplementary loss components. We incorporated three architectures: LSTM, CNN, and NLinear as the base data-driven model. Despite varying performance across different base models and bridges, SPINNs overall outperformed pure data-driven models. In some bridge cases, SPINN reduced forecasting errors by up to 50 percent. In this study, we also explored general models for bridge clusters, trained by aggregating datasets across multiple bridges in a region. The pure data-driven models mostly benefited from this approach, in particular bridges with limited data. However, bridge-specific SPINNs provided more accurate predictions than general SPINNs for almost all case studies. Also, the time-dependent empirical equations derived from SPINNs showed reasonable accuracy in estimating maximum scour depth, providing more accurate predictions compared to HEC-18. Comparing both SPINNs and pure deep learning models with traditional HEC-18 equation indicates substantial improvements in scour prediction accuracy. This study can pave the way for hybrid physics-machine learning methodologies to be implemented for bridge scour design and maintenance.