Discrete choice modelling is a theory-driven modelling framework for understanding and forecasting choice behaviour. To obtain behavioural insights, modellers test several competing model specifications in their attempts to discover the 'true' data generation process. This trial-and-error process requires expertise, is time-consuming, and relies on subjective theoretical assumptions. Although metaheuristics have been proposed to assist choice modellers, they treat model specification as a classic optimisation problem, relying on static strategies, applying predefined rules, and neglecting outcomes from previous estimated models. As a result, current metaheuristics struggle to prioritise promising search regions, adapt exploration dynamically, and transfer knowledge to other modelling tasks. To address these limitations, we introduce a deep reinforcement learning-based framework where an 'agent' specifies models by estimating them and receiving rewards based on goodness-of-fit and parsimony. Results demonstrate the agent dynamically adapts its strategies to identify promising specifications across data generation processes, showing robustness and potential transferability, without prior domain knowledge.