Traditional image segmentation methods, such as variational models based on partial differential equations (PDEs), offer strong mathematical interpretability and precise boundary modeling, but often suffer from sensitivity to parameter settings and high computational costs. In contrast, deep learning models such as UNet, which are relatively lightweight in parameters, excel in automatic feature extraction but lack theoretical interpretability and require extensive labeled data. To harness the complementary strengths of both paradigms, we propose Variational Model Based Tailored UNet (VM_TUNet), a novel hybrid framework that integrates the fourth-order modified Cahn-Hilliard equation with the deep learning backbone of UNet, which combines the interpretability and edge-preserving properties of variational methods with the adaptive feature learning of neural networks. Specifically, a data-driven operator is introduced to replace manual parameter tuning, and we incorporate the tailored finite point method (TFPM) to enforce high-precision boundary preservation. Experimental results on benchmark datasets demonstrate that VM_TUNet achieves superior segmentation performance compared to existing approaches, especially for fine boundary delineation.