Beamforming (BF) is essential for enhancing system capacity in fifth generation (5G) and beyond wireless networks, yet exhaustive beam training in ultra-massive multiple-input multiple-output (MIMO) systems incurs substantial overhead. To address this challenge, we propose a deep learning based framework that leverages position-aware features to improve beam prediction accuracy while reducing training costs. The proposed approach uses spatial coordinate labels to supervise a position extraction branch and integrates the resulting representations with beam-domain features through a feature fusion module. A dual-branch RegNet architecture is adopted to jointly learn location related and communication features for beam prediction. Two fusion strategies, namely adaptive fusion and adversarial fusion, are introduced to enable efficient feature integration. The proposed framework is evaluated on datasets generated by the DeepMIMO simulator across four urban scenarios at 3.5 GHz following 3GPP specifications, where both reference signal received power and user equipment location information are available. Simulation results under both in-distribution and out-of-distribution settings demonstrate that the proposed approach consistently outperforms traditional baselines and achieves more accurate and robust beam prediction by effectively incorporating positioning information.