Although large language model (LLM)-based agents, exemplified by OpenClaw, are increasingly evolving from task-oriented systems into personalized AI assistants for solving complex real-world tasks, their practical deployment also introduces severe security risks. However, existing agent security research and evaluation frameworks primarily focus on synthetic or task-centric settings, and thus fail to accurately capture the attack surface and risk propagation mechanisms of personalized agents in real-world deployments. To address this gap, we propose Personalized Agent Security Bench (PASB), an end-to-end security evaluation framework tailored for real-world personalized agents. Building upon existing agent attack paradigms, PASB incorporates personalized usage scenarios, realistic toolchains, and long-horizon interactions, enabling black-box, end-to-end security evaluation on real systems. Using OpenClaw as a representative case study, we systematically evaluate its security across multiple personalized scenarios, tool capabilities, and attack types. Our results indicate that OpenClaw exhibits critical vulnerabilities at different execution stages, including user prompt processing, tool usage, and memory retrieval, highlighting substantial security risks in personalized agent deployments. The code for the proposed PASB framework is available at https://github.com/AstorYH/PASB.