Federated learning aggregates model updates from distributed clients, but standard first order methods such as FedAvg apply the same scalar weight to all parameters from each client. Under non-IID data, these uniformly weighted updates can be strongly misaligned across clients, causing client drift and degrading the global model. Here we propose Fisher-Informed Parameterwise Aggregation (FIPA), a second-order aggregation method that replaces client-level scalar weights with parameter-specific Fisher Information Matrix (FIM) weights, enabling true parameter-level scaling that captures how each client's data uniquely influences different parameters. With low-rank approximation, FIPA remains communication- and computation-efficient. Across nonlinear function regression, PDE learning, and image classification, FIPA consistently improves over averaging-based aggregation, and can be effectively combined with state-of-the-art client-side optimization algorithms to further improve image classification accuracy. These results highlight the benefits of FIPA for federated learning under heterogeneous data distributions.