Extending 3D Gaussian Splatting (3DGS) to 4D physical simulation remains challenging. Based on the Material Point Method (MPM), existing methods either rely on manual parameter tuning or distill dynamics from video diffusion models, limiting the generalization and optimization efficiency. Recent attempts using LLMs/VLMs suffer from a text/image-to-3D perceptual gap, yielding unstable physics behavior. In addition, they often ignore the surface structure of 3DGS, leading to implausible motion. We propose FastPhysGS, a fast and robust framework for physics-based dynamic 3DGS simulation:(1) Instance-aware Particle Filling (IPF) with Monte Carlo Importance Sampling (MCIS) to efficiently populate interior particles while preserving geometric fidelity; (2) Bidirectional Graph Decoupling Optimization (BGDO), an adaptive strategy that rapidly optimizes material parameters predicted from a VLM. Experiments show FastPhysGS achieves high-fidelity physical simulation in 1 minute using only 7 GB runtime memory, outperforming prior works with broad potential applications.