Human-centric vision models (HVMs) have achieved remarkable generalization due to large-scale pretraining on massive person images. However, their dependence on large neural architectures and the restricted accessibility of pretraining data significantly limits their practicality in real-world applications. To address this limitation, we propose Dynamic Pattern Alignment Learning (DPAL), a novel distillation-based pretraining framework that efficiently trains lightweight HVMs to acquire strong generalization from large HVMs. In particular, human-centric visual perception are highly dependent on three typical visual patterns, including global identity pattern, local shape pattern and multi-person interaction pattern. To achieve generalizable lightweight HVMs, we firstly design a dynamic pattern decoder (D-PaDe), acting as a dynamic Mixture of Expert (MoE) model. It incorporates three specialized experts dedicated to adaptively extract typical visual patterns, conditioned on both input image and pattern queries. And then, we present three levels of alignment objectives, which aims to minimize generalization gap between lightweight HVMs and large HVMs at global image level, local pixel level, and instance relation level. With these two deliberate designs, the DPAL effectively guides lightweight model to learn all typical human visual patterns from large HVMs, which can generalize to various human-centric vision tasks. Extensive experiments conducted on 15 challenging datasets demonstrate the effectiveness of the DPAL. Remarkably, when employing PATH-B as the teacher, DPAL-ViT/Ti (5M parameters) achieves surprising generalizability similar to existing large HVMs such as PATH-B (84M) and Sapiens-L (307M), and outperforms previous distillation-based pretraining methods including Proteus-ViT/Ti (5M) and TinyMiM-ViT/Ti (5M) by a large margin.