In physical-layer security schemes, radio frequency fingerprint (RFF) identification of WiFi devices is susceptible to receiver differences, which can significantly degrade classification performance when a model is trained on one receiver but tested on another. In this paper, we propose a division-based receiver-agnostic RFF extraction method for WiFi systems, which removes the receivers' effects by dividing different preambles in the frequency domain. The proposed method requires only a single receiver for training and does not rely on additional calibration or stacking processes. First, for flat fading channel scenarios, the legacy short training field (L-STF) and legacy long training field (L-LTF) of the unknown device are divided by those of the reference device in the frequency domain. The receiver-dependent effects can be eliminated with the requirement of only a single receiver for training, and the higher-dimensional RFF features can be extracted. Second, for frequency-selective fading channel scenarios, the high-throughput long training field (HT-LTF) is divided by the L-LTF in the frequency domain. Only a single receiver is required for training and the higher-dimensional RFF features that are both channel-invariant and receiver-agnostic are extracted. Finally, simulation and experimental results demonstrate that the proposed method effectively mitigate the impacts of channel variations and receiver differences. The classification results show that, even when training on a single receiver and testing on a different one, the proposed method achieves classification accuracy improvements of 15.5% and 28.45% over the state-of-the-art approach in flat fading and frequency-selective fading channel scenarios, respectively.