Diffusion speech enhancement on discrete audio codec features gain immense attention due to their improved speech component reconstruction capability. However, they usually suffer from high inference computational complexity due to multiple reverse process iterations. Furthermore, they generally achieve promising results on non-intrusive metrics but show poor performance on intrusive metrics, as they may struggle in reconstructing the correct phones. In this paper, we propose DisContSE, an efficient diffusion-based speech enhancement model on joint discrete codec tokens and continuous embeddings. Our contributions are three-fold. First, we formulate both a discrete and a continuous enhancement module operating on discrete audio codec tokens and continuous embeddings, respectively, to achieve improved fidelity and intelligibility simultaneously. Second, a semantic enhancement module is further adopted to achieve optimal phonetic accuracy. Third, we achieve a single-step efficient reverse process in inference with a novel quantization error mask initialization strategy, which, according to our knowledge, is the first successful single-step diffusion speech enhancement based on an audio codec. Trained and evaluated on URGENT 2024 Speech Enhancement Challenge data splits, the proposed DisContSE excels top-reported time- and frequency-domain diffusion baseline methods in PESQ, POLQA, UTMOS, and in a subjective ITU-T P.808 listening test, clearly achieving an overall top rank.