When recalling information in conversation, people often arrive at the recollection after multiple turns. However, existing benchmarks for evaluating agent capabilities in such tip-of-the-tongue search processes are restricted to single-turn settings. To more realistically simulate tip-of-the-tongue search, we introduce Dual-agent based Evaluation Through Obscure Under-specified Retrieval (DETOUR), a dual-agent evaluation benchmark containing 1,011 prompts. The benchmark design involves a Primary Agent, which is the subject of evaluation, tasked with identifying the recollected entity through querying a Memory Agent that is held consistent across evaluations. Our results indicate that current state-of-the-art models still struggle with our benchmark, only achieving 36% accuracy when evaluated on all modalities (text, image, audio, and video), highlighting the importance of enhancing capabilities in underspecified scenarios.