RGB-D scene parsing methods effectively capture both semantic and geometric features of the environment, demonstrating great potential under challenging conditions such as extreme weather and low lighting. However, existing RGB-D scene parsing methods predominantly rely on supervised training strategies, which require a large amount of manually annotated pixel-level labels that are both time-consuming and costly. To overcome these limitations, we introduce DepthMatch, a semi-supervised learning framework that is specifically designed for RGB-D scene parsing. To make full use of unlabeled data, we propose complementary patch mix-up augmentation to explore the latent relationships between texture and spatial features in RGB-D image pairs. We also design a lightweight spatial prior injector to replace traditional complex fusion modules, improving the efficiency of heterogeneous feature fusion. Furthermore, we introduce depth-guided boundary loss to enhance the model's boundary prediction capabilities. Experimental results demonstrate that DepthMatch exhibits high applicability in both indoor and outdoor scenes, achieving state-of-the-art results on the NYUv2 dataset and ranking first on the KITTI Semantics benchmark.