Boundary representation (B-rep) is the industry standard for computer-aided design (CAD). While deep learning shows promise in processing B-rep models, existing methods suffer from a representation gap: continuous approaches offer analytical precision but are visually abstract, whereas discrete methods provide intuitive clarity at the expense of geometric precision. To bridge this gap, we introduce Brep2Shape, a novel self-supervised pre-training method designed to align abstract boundary representations with intuitive shape representations. Our method employs a geometry-aware task where the model learns to predict dense spatial points from parametric Bézier control points, enabling the network to better understand physical manifolds derived from abstract coefficients. To enhance this alignment, we propose a Dual Transformer backbone with parallel streams that independently encode surface and curve tokens to capture their distinct geometric properties. Moreover, the topology attention is integrated to model the interdependencies between surfaces and curves, thereby maintaining topological consistency. Experimental results demonstrate that Brep2Shape offers significant scalability, achieving state-of-the-art accuracy and faster convergence across various downstream tasks.