We investigate episodic Markov Decision Processes with heavy-tailed feedback (HTMDPs). Existing approaches for HTMDPs are conservative in stochastic environments and lack adaptivity in adversarial regimes. In this work, we propose algorithms HT-FTRL-OM and HT-FTRL-UOB for HTMDPs that achieve Best-of-Both-Worlds (BoBW) guarantees: instance-independent regret in adversarial environments and logarithmic instance-dependent regret in self-bounding (including the stochastic case) environments. For the known transition setting, HT-FTRL-OM applies the Follow-The-Regularized-Leader (FTRL) framework over occupancy measures with novel skipping loss estimators, achieving a $\widetilde{O}(T^{1/α})$ regret bound in adversarial regimes and a $O(\log T)$ regret in stochastic regimes. Building upon this framework, we develop a novel algorithm HT-FTRL-UOB to tackle the more challenging unknown-transition setting. This algorithm employs a pessimistic skipping loss estimator and achieves a $\widetilde{O}(T^{1/α} + \sqrt{T})$ regret in adversarial regimes and a $O(\log^2(T))$ regret in stochastic regimes. Our analysis overcomes key barriers through several technical insights, including a local control mechanism for heavy-tailed shifted losses, a new suboptimal-mass propagation principle, and a novel regret decomposition that isolates transition uncertainty from heavy-tailed estimation errors and skipping bias.