We study the common generalization of Markov decision processes (MDPs) with sets of transition probabilities, known as robust MDPs (RMDPs). A standard goal in RMDPs is to compute a policy that maximizes the expected return under an adversarial choice of the transition probabilities. If the uncertainty in the probabilities is independent between the states, known as s-rectangularity, such optimal robust policies can be computed efficiently using robust value iteration. However, there might still be multiple optimal robust policies, which, while equivalent with respect to the worst-case, reflect different expected returns under non-adversarial choices of the transition probabilities. Hence, we propose a refined policy selection criterion for RMDPs, drawing inspiration from the notions of dominance and best-effort in game theory. Instead of seeking a policy that only maximizes the worst-case expected return, we additionally require the policy to achieve a maximal expected return under different (i.e., not fully adversarial) transition probabilities. We call such a policy an optimal robust best-effort (ORBE) policy. We prove that ORBE policies always exist, characterize their structure, and present an algorithm to compute them with a small overhead compared to standard robust value iteration. ORBE policies offer a principled tie-breaker among optimal robust policies. Numerical experiments show the feasibility of our approach.