https://jayce-ping.github.io/AutoGPS-homepage.
Geometry problem solving presents distinctive challenges in artificial intelligence, requiring exceptional multimodal comprehension and rigorous mathematical reasoning capabilities. Existing approaches typically fall into two categories: neural-based and symbolic-based methods, both of which exhibit limitations in reliability and interpretability. To address this challenge, we propose AutoGPS, a neuro-symbolic collaborative framework that solves geometry problems with concise, reliable, and human-interpretable reasoning processes. Specifically, AutoGPS employs a Multimodal Problem Formalizer (MPF) and a Deductive Symbolic Reasoner (DSR). The MPF utilizes neural cross-modal comprehension to translate geometry problems into structured formal language representations, with feedback from DSR collaboratively. The DSR takes the formalization as input and formulates geometry problem solving as a hypergraph expansion task, executing mathematically rigorous and reliable derivation to produce minimal and human-readable stepwise solutions. Extensive experimental evaluations demonstrate that AutoGPS achieves state-of-the-art performance on benchmark datasets. Furthermore, human stepwise-reasoning evaluation confirms AutoGPS's impressive reliability and interpretability, with 99\% stepwise logical coherence. The project homepage is at