This paper investigates the application of non-orthogonal multiple access (NOMA) to grant-free transmissions to reduce the age of information (AoI) in uplink status update systems, where multiple sources upload their {status updates} to {a common} receiver. Unlike existing studies which {adopted} the idealized generate-at-will (GAW) model, {i.e., a status} update data can be generated and transmitted at any time, this paper utilizes a more practical model {to characterize} the inherent randomness of the generation of the status updating data packets. A rigorous analytical framework is established to precisely evaluate the average AoI achieved by the NOMA-assisted grant-free schemes for both {the} cases with and without retransmission. The impact of the choice of the probability {of transmission} on the average AoI is investigated. Extensive simulation results are provided to validate the accuracy of the developed analysis. It is shown that NOMA-assisted schemes are more superior in reducing AoI{, compared} to orthogonal multiple access (OMA) based schemes. In addition, compared to schemes without retransmission, the AoI performance {of} the schemes with retransmission can {be improved} significantly when the status update generation rate is low or the user density is relatively high.