Human mobility prediction is crucial for applications ranging from location-based recommendations to urban planning, which aims to forecast users' next location visits based on historical trajectories. Despite the severe long-tailed distribution of locations, the problem of long-tailed mobility prediction remains largely underexplored. Existing long-tailed learning methods primarily focus on rebalancing the skewed distribution at the data, model, or class level, neglecting to exploit the spatiotemporal semantics of locations. To address this gap, we propose the first plug-and-play framework for long-tailed mobility prediction in an exploitation and exploration manner, named \textbf{A}daptive \textbf{LO}cation \textbf{H}ier\textbf{A}rchy learning (ALOHA). First, we construct city-tailored location hierarchy based on Large Language Models (LLMs) by exploiting Maslow's theory of human motivation to design Chain-of-Thought (CoT) prompts that captures spatiotemporal semantics. Second, we optimize the location hierarchy predictions by Gumbel disturbance and node-wise adaptive weights within the hierarchical tree structure. Experiments on state-of-the-art models across six datasets demonstrate the framework's consistent effectiveness and generalizability, which strikes a well balance between head and tail locations. Weight analysis and ablation studies reveal the optimization differences of each component for head and tail locations. Furthermore, in-depth analyses of hierarchical distance and case study demonstrate the effective semantic guidance from the location hierarchy. Our code will be made publicly available.