Abstract:Current machine translation models provide us with high-quality outputs in most scenarios. However, they still face some specific problems, such as detecting which entities should not be changed during translation. In this paper, we explore the abilities of popular NMT models, including models from the OPUS project, Google Translate, MADLAD, and EuroLLM, to preserve entities such as URL addresses, IBAN numbers, or emails when producing translations between four languages: English, German, Polish, and Ukrainian. We investigate the quality of popular NMT models in terms of accuracy, discuss errors made by the models, and examine the reasons for errors. Our analysis highlights specific categories, such as emojis, that pose significant challenges for many models considered. In addition to the analysis, we propose a new multilingual synthetic dataset of 36,000 sentences that can help assess the quality of entity transfer across nine categories and four aforementioned languages.
Abstract:People use language for various purposes. Apart from sharing information, individuals may use it to express emotions or to show respect for another person. In this paper, we focus on the formality level of machine-generated translations and present FAME-MT -- a dataset consisting of 11.2 million translations between 15 European source languages and 8 European target languages classified to formal and informal classes according to target sentence formality. This dataset can be used to fine-tune machine translation models to ensure a given formality level for each European target language considered. We describe the dataset creation procedure, the analysis of the dataset's quality showing that FAME-MT is a reliable source of language register information, and we present a publicly available proof-of-concept machine translation model that uses the dataset to steer the formality level of the translation. Currently, it is the largest dataset of formality annotations, with examples expressed in 112 European language pairs. The dataset is published online: https://github.com/laniqo-public/fame-mt/ .