Abstract:Scalable image compression is a technique that progressively reconstructs multiple versions of an image for different requirements. In recent years, images have increasingly been consumed not only by humans but also by image recognition models. This shift has drawn growing attention to scalable image compression methods that serve both machine and human vision (ICMH). Many existing models employ neural network-based codecs, known as learned image compression, and have made significant strides in this field by carefully designing the loss functions. In some cases, however, models are overly reliant on their learning capacity, and their architectural design is not sufficiently considered. In this paper, we enhance the coding efficiency and interpretability of ICMH framework by integrating an explicit residual compression mechanism, which is commonly employed in resolution scalable coding methods such as JPEG2000. Specifically, we propose two complementary methods: Feature Residual-based Scalable Coding (FR-ICMH) and Pixel Residual-based Scalable Coding (PR-ICMH). These proposed methods are applicable to various machine vision tasks. Moreover, they provide flexibility to choose between encoder complexity and compression performance, making it adaptable to diverse application requirements. Experimental results demonstrate the effectiveness of our proposed methods, with PR-ICMH achieving up to 29.57% BD-rate savings over the previous work.
Abstract:Currently, high-fidelity text-to-image models are developed in an accelerating pace. Among them, Diffusion Models have led to a remarkable improvement in the quality of image generation, making it vary challenging to distinguish between real and synthesized images. It simultaneously raises serious concerns regarding privacy and security. Some methods are proposed to distinguish the diffusion model generated images through reconstructing. However, the inversion and denoising processes are time-consuming and heavily reliant on the pre-trained generative model. Consequently, if the pre-trained generative model meet the problem of out-of-domain, the detection performance declines. To address this issue, we propose a universal synthetic image detector Time Step Generating (TSG), which does not rely on pre-trained models' reconstructing ability, specific datasets, or sampling algorithms. Our method utilizes a pre-trained diffusion model's network as a feature extractor to capture fine-grained details, focusing on the subtle differences between real and synthetic images. By controlling the time step t of the network input, we can effectively extract these distinguishing detail features. Then, those features can be passed through a classifier (i.e. Resnet), which efficiently detects whether an image is synthetic or real. We test the proposed TSG on the large-scale GenImage benchmark and it achieves significant improvements in both accuracy and generalizability.