Abstract:Recent advancements in large language model (LLM) agents have significantly accelerated scientific discovery automation, yet concurrently raised critical ethical and safety concerns. To systematically address these challenges, we introduce \textbf{SafeScientist}, an innovative AI scientist framework explicitly designed to enhance safety and ethical responsibility in AI-driven scientific exploration. SafeScientist proactively refuses ethically inappropriate or high-risk tasks and rigorously emphasizes safety throughout the research process. To achieve comprehensive safety oversight, we integrate multiple defensive mechanisms, including prompt monitoring, agent-collaboration monitoring, tool-use monitoring, and an ethical reviewer component. Complementing SafeScientist, we propose \textbf{SciSafetyBench}, a novel benchmark specifically designed to evaluate AI safety in scientific contexts, comprising 240 high-risk scientific tasks across 6 domains, alongside 30 specially designed scientific tools and 120 tool-related risk tasks. Extensive experiments demonstrate that SafeScientist significantly improves safety performance by 35\% compared to traditional AI scientist frameworks, without compromising scientific output quality. Additionally, we rigorously validate the robustness of our safety pipeline against diverse adversarial attack methods, further confirming the effectiveness of our integrated approach. The code and data will be available at https://github.com/ulab-uiuc/SafeScientist. \textcolor{red}{Warning: this paper contains example data that may be offensive or harmful.}
Abstract:Trajectory prediction, as a critical component of autonomous driving systems, has attracted the attention of many researchers. Existing prediction algorithms focus on extracting more detailed scene features or selecting more reasonable trajectory destinations. However, in the face of dynamic and evolving future movements of the target vehicle, these algorithms cannot provide a fine-grained and continuous description of future behaviors and lane constraints, which degrades the prediction accuracy. To address this challenge, we present BLNet, a novel dualstream architecture that synergistically integrates behavioral intention recognition and lane constraint modeling through parallel attention mechanisms. The framework generates fine-grained behavior state queries (capturing spatial-temporal movement patterns) and lane queries (encoding lane topology constraints), supervised by two auxiliary losses, respectively. Subsequently, a two-stage decoder first produces trajectory proposals, then performs point-level refinement by jointly incorporating both the continuity of passed lanes and future motion features. Extensive experiments on two large datasets, nuScenes and Argoverse, show that our network exhibits significant performance gains over existing direct regression and goal-based algorithms.