Abstract:Event cameras excel in high-speed vision due to their high temporal resolution, high dynamic range, and low power consumption. However, as dynamic vision sensors, their output is inherently noisy, making efficient denoising essential to preserve their ultra-low latency and real-time processing capabilities. Existing event denoising methods struggle with a critical dilemma: computationally intensive approaches compromise the sensor's high-speed advantage, while lightweight methods often lack robustness across varying noise levels. To address this, we propose a novel event denoising framework based on State Space Models (SSMs). Our approach represents events as 4D event clouds and includes a Coarse Feature Extraction (CFE) module that extracts embedding features from both geometric and polarity-aware subspaces. The model is further composed of two essential components: A Spatial Mamba (S-SSM) that models local geometric structures and a Temporal Mamba (T-SSM) that captures global temporal dynamics, efficiently propagating spatiotemporal features across events. Experiments demonstrate that our method achieves state-of-the-art accuracy and efficiency, with 88.89K parameters, 0.0685s per 100K events inference time, and a 0.982 accuracy score, outperforming Transformer-based methods by 2.08% in denoising accuracy and 36X faster.
Abstract:Event cameras excel in high temporal resolution and dynamic range but suffer from dense noise in rainy conditions. Existing event deraining methods face trade-offs between temporal precision, deraining effectiveness, and computational efficiency. In this paper, we propose PRE-Mamba, a novel point-based event camera deraining framework that fully exploits the spatiotemporal characteristics of raw event and rain. Our framework introduces a 4D event cloud representation that integrates dual temporal scales to preserve high temporal precision, a Spatio-Temporal Decoupling and Fusion module (STDF) that enhances deraining capability by enabling shallow decoupling and interaction of temporal and spatial information, and a Multi-Scale State Space Model (MS3M) that captures deeper rain dynamics across dual-temporal and multi-spatial scales with linear computational complexity. Enhanced by frequency-domain regularization, PRE-Mamba achieves superior performance (0.95 SR, 0.91 NR, and 0.4s/M events) with only 0.26M parameters on EventRain-27K, a comprehensive dataset with labeled synthetic and real-world sequences. Moreover, our method generalizes well across varying rain intensities, viewpoints, and even snowy conditions.