Abstract:Robotic manipulation in contact-rich environments remains challenging, particularly when relying on conventional tactile sensors that suffer from limited sensing range, reliability, and cost-effectiveness. In this work, we present LVTG, a low-cost visuo-tactile gripper designed for stable, robust, and efficient physical interaction. Unlike existing visuo-tactile sensors, LVTG enables more effective and stable grasping of larger and heavier everyday objects, thanks to its enhanced tactile sensing area and greater opening angle. Its surface skin is made of highly wear-resistant material, significantly improving durability and extending operational lifespan. The integration of vision and tactile feedback allows LVTG to provide rich, high-fidelity sensory data, facilitating reliable perception during complex manipulation tasks. Furthermore, LVTG features a modular design that supports rapid maintenance and replacement. To effectively fuse vision and touch, We adopt a CLIP-inspired contrastive learning objective to align tactile embeddings with their corresponding visual observations, enabling a shared cross-modal representation space for visuo-tactile perception. This alignment improves the performance of an Action Chunking Transformer (ACT) policy in contact-rich manipulation, leading to more efficient data collection and more effective policy learning. Compared to the original ACT method, the proposed LVTG with pretraining achieves significantly higher success rates in manipulation tasks.




Abstract:Uyghur is a minority language, and its resources for Automatic Speech Recognition (ASR) research are always insufficient. THUYG-20 is currently the only open-sourced dataset of Uyghur speeches. State-of-the-art results of its clean and noiseless speech test task haven't been updated since the first release, which shows a big gap in the development of ASR between mainstream languages and Uyghur. In this paper, we try to bridge the gap by ultimately optimizing the ASR systems, and by developing a morpheme-based decoder, MLDG-Decoder (Morpheme Lattice Dynamically Generating Decoder for Uyghur DNN-HMM systems), which has long been missing. We have open-sourced the decoder. The MLDG-Decoder employs an algorithm, named as "on-the-fly composition with FEBABOS", to allow the back-off states and transitions to play the role of a relay station in on-the-fly composition. The algorithm empowers the dynamically generated graph to constrain the morpheme sequences in the lattices as effectively as the static and fully composed graph does when a 4-Gram morpheme-based Language Model (LM) is used. We have trained deeper and wider neural network acoustic models, and experimented with three kinds of decoding schemes. The experimental results show that the decoding based on the static and fully composed graph reduces state-of-the-art Word Error Rate (WER) on the clean and noiseless speech test task in THUYG-20 to 14.24%. The MLDG-Decoder reduces the WER to 14.54% while keeping the memory consumption reasonable. Based on the open-sourced MLDG-Decoder, readers can easily reproduce the experimental results in this paper.