Abstract:Planning with learned dynamics models offers a promising approach toward real-world, long-horizon manipulation, particularly in nonprehensile settings such as pushing or rolling, where accurate analytical models are difficult to obtain. Although learning-based methods hold promise, collecting training data can be costly and inefficient, as it often relies on randomly sampled interactions that are not necessarily the most informative. To address this challenge, we propose ActivePusher, a novel framework that combines residual-physics modeling with kernel-based uncertainty-driven active learning to focus data acquisition on the most informative skill parameters. Additionally, ActivePusher seamlessly integrates with model-based kinodynamic planners, leveraging uncertainty estimates to bias control sampling toward more reliable actions. We evaluate our approach in both simulation and real-world environments and demonstrate that it improves data efficiency and planning success rates compared to baseline methods.
Abstract:Global redundancy resolution (GRR) roadmap is a novel concept in robotics that facilitates the mapping from task space paths to configuration space paths in a legible, predictable, and repeatable way. Such roadmaps could find widespread utility in applications such as safe teleoperation, consistent path planning, and factory workcell design. However, the previous methods to compute GRR roadmaps often necessitate a lengthy computation time and produce non-smooth paths, limiting their practical efficacy. To address this challenge, we introduce a novel method Expansion-GRR that leverages efficient configuration space projections and enables a rapid generation of smooth roadmaps that satisfy the task constraints. Additionally, we propose a simple multi-seed strategy that further enhances the final quality. We conducted experiments in simulation with a 5-link planar manipulator and a Kinova arm. We were able to generate the GRR roadmaps up to 2 orders of magnitude faster while achieving higher smoothness. We also demonstrate the utility of the GRR roadmaps in teleoperation tasks where our method outperformed prior methods and reactive IK solvers in terms of success rate and solution quality.