Abstract:Learning to coordinate many agents in partially observable and highly dynamic environments requires both informative representations and data-efficient training. To address this challenge, we present a novel model-based multi-agent reinforcement learning framework that unifies joint state-action representation learning with imaginative roll-outs. We design a world model trained with variational auto-encoders and augment the model using the state-action learned embedding (SALE). SALE is injected into both the imagination module that forecasts plausible future roll-outs and the joint agent network whose individual action values are combined through a mixing network to estimate the joint action-value function. By coupling imagined trajectories with SALE-based action values, the agents acquire a richer understanding of how their choices influence collective outcomes, leading to improved long-term planning and optimization under limited real-environment interactions. Empirical studies on well-established multi-agent benchmarks, including StarCraft II Micro-Management, Multi-Agent MuJoCo, and Level-Based Foraging challenges, demonstrate consistent gains of our method over baseline algorithms and highlight the effectiveness of joint state-action learned embeddings within a multi-agent model-based paradigm.




Abstract:In this paper, we propose a novel model-based multi-agent reinforcement learning approach named Value Decomposition Framework with Disentangled World Model to address the challenge of achieving a common goal of multiple agents interacting in the same environment with reduced sample complexity. Due to scalability and non-stationarity problems posed by multi-agent systems, model-free methods rely on a considerable number of samples for training. In contrast, we use a modularized world model, composed of action-conditioned, action-free, and static branches, to unravel the environment dynamics and produce imagined outcomes based on past experience, without sampling directly from the real environment. We employ variational auto-encoders and variational graph auto-encoders to learn the latent representations for the world model, which is merged with a value-based framework to predict the joint action-value function and optimize the overall training objective. We present experimental results in Easy, Hard, and Super-Hard StarCraft II micro-management challenges to demonstrate that our method achieves high sample efficiency and exhibits superior performance in defeating the enemy armies compared to other baselines.