Abstract:Graph Neural Networks (GNNs) have achieved remarkable success across a range of learning tasks. However, scaling GNNs to large graphs remains a significant challenge, especially for graph-level tasks. In this work, we introduce SHAKE-GNN, a novel scalable graph-level GNN framework based on a hierarchy of Kirchhoff Forests, a class of random spanning forests used to construct stochastic multi-resolution decompositions of graphs. SHAKE-GNN produces multi-scale representations, enabling flexible trade-offs between efficiency and performance. We introduce an improved, data-driven strategy for selecting the trade-off parameter and analyse the time-complexity of SHAKE-GNN. Experimental results on multiple large-scale graph classification benchmarks demonstrate that SHAKE-GNN achieves competitive performance while offering improved scalability.
Abstract:Personalized image generation allows users to preserve styles or subjects of a provided small set of images for further image generation. With the advancement in large text-to-image models, many techniques have been developed to efficiently fine-tune those models for personalization, such as Low Rank Adaptation (LoRA). However, LoRA-based methods often face the challenge of adjusting the rank parameter to achieve satisfactory results. To address this challenge, AutoComponent-LoRA (AC-LoRA) is proposed, which is able to automatically separate the signal component and noise component of the LoRA matrices for fast and efficient personalized artistic style image generation. This method is based on Singular Value Decomposition (SVD) and dynamic heuristics to update the hyperparameters during training. Superior performance over existing methods in overcoming model underfitting or overfitting problems is demonstrated. The results were validated using FID, CLIP, DINO, and ImageReward, achieving an average of 9% improvement.