Abstract:Retrogressive Thaw Slumps (RTS) in Arctic regions are distinct permafrost landforms with significant environmental impacts. Mapping these RTS is crucial because their appearance serves as a clear indication of permafrost thaw. However, their small scale compared to other landform features, vague boundaries, and spatiotemporal variation pose significant challenges for accurate detection. In this paper, we employed a state-of-the-art deep learning model, the Cascade Mask R-CNN with a multi-scale vision transformer-based backbone, to delineate RTS features across the Arctic. Two new strategies were introduced to optimize multimodal learning and enhance the model's predictive performance: (1) a feature-level, residual cross-modality attention fusion strategy, which effectively integrates feature maps from multiple modalities to capture complementary information and improve the model's ability to understand complex patterns and relationships within the data; (2) pre-trained unimodal learning followed by multimodal fine-tuning to alleviate high computing demand while achieving strong model performance. Experimental results demonstrated that our approach outperformed existing models adopting data-level fusion, feature-level convolutional fusion, and various attention fusion strategies, providing valuable insights into the efficient utilization of multimodal data for RTS mapping. This research contributes to our understanding of permafrost landforms and their environmental implications.
Abstract:Initiated by the University Consortium of Geographic Information Science (UCGIS), GIS&T Body of Knowledge (BoK) is a community-driven endeavor to define, develop, and document geospatial topics related to geographic information science and technologies (GIS&T). In recent years, GIS&T BoK has undergone rigorous development in terms of its topic re-organization and content updating, resulting in a new digital version of the project. While the BoK topics provide useful materials for researchers and students to learn about GIS, the semantic relationships among the topics, such as semantic similarity, should also be identified so that a better and automated topic navigation can be achieved. Currently, the related topics are either defined manually by editors or authors, which may result in an incomplete assessment of topic relationship. To address this challenge, our research evaluates the effectiveness of multiple natural language processing (NLP) techniques in extracting semantics from text, including both deep neural networks and traditional machine learning approaches. Besides, a novel text summarization - KACERS (Keyword-Aware Cross-Encoder-Ranking Summarizer) - is proposed to generate a semantic summary of scientific publications. By identifying the semantic linkages among key topics, this work provides guidance for future development and content organization of the GIS&T BoK project. It also offers a new perspective on the use of machine learning techniques for analyzing scientific publications, and demonstrate the potential of KACERS summarizer in semantic understanding of long text documents.