Abstract:The recovery of block-sparse signals with unknown structural patterns remains a fundamental challenge in structured sparse signal reconstruction. By proposing a variance transformation framework, this paper unifies existing pattern-based block sparse Bayesian learning methods, and introduces a novel space power prior based on undirected graph models to adaptively capture the unknown patterns of block-sparse signals. By combining the EM algorithm with high-order equation root-solving, we develop a new structured sparse Bayesian learning method, SPP-SBL, which effectively addresses the open problem of space coupling parameter estimation in pattern-based methods. We further demonstrate that learning the relative values of space coupling parameters is key to capturing unknown block-sparse patterns and improving recovery accuracy. Experiments validate that SPP-SBL successfully recovers various challenging structured sparse signals (e.g., chain-structured signals and multi-pattern sparse signals) and real-world multi-modal structured sparse signals (images, audio), showing significant advantages in recovery accuracy across multiple metrics.
Abstract:This paper introduces a novel prior called Diversified Block Sparse Prior to characterize the widespread block sparsity phenomenon in real-world data. By allowing diversification on variance and correlation matrix, we effectively address the sensitivity issue of existing block sparse learning methods to pre-defined block information, which enables adaptive block estimation while mitigating the risk of overfitting. Based on this, a diversified block sparse Bayesian learning method (DivSBL) is proposed, utilizing EM algorithm and dual ascent method for hyperparameter estimation. Moreover, we establish the global and local optimality theory of our model. Experiments validate the advantages of DivSBL over existing algorithms.