Abstract:Deep neural networks have achieved remarkable results in computer vision tasks. In the early days, Convolutional Neural Networks (CNNs) were the mainstream architecture. In recent years, Vision Transformers (ViTs) have become increasingly popular. In addition, exploring applications of multi-layer perceptrons (MLPs) has provided new perspectives for research into vision model architectures. In this paper, we present evMLP accompanied by a simple event-driven local update mechanism. The proposed evMLP can independently process patches on images or feature maps via MLPs. We define changes between consecutive frames as "events". Under the event-driven local update mechanism, evMLP selectively processes patches where events occur. For sequential image data (e.g., video processing), this approach improves computational performance by avoiding redundant computations. Through ImageNet image classification experiments, evMLP attains accuracy competitive with state-of-the-art models. More significantly, experimental results on multiple video datasets demonstrate that evMLP reduces computational cost via its event-driven local update mechanism while maintaining output consistency with its non-event-driven baseline. The code and trained models are available at https://github.com/i-evi/evMLP.
Abstract:Style transfer is a useful image synthesis technique that can re-render given image into another artistic style while preserving its content information. Generative Adversarial Network (GAN) is a widely adopted framework toward this task for its better representation ability on local style patterns than the traditional Gram-matrix based methods. However, most previous methods rely on sufficient amount of pre-collected style images to train the model. In this paper, a novel Patch Permutation GAN (P$^2$-GAN) network that can efficiently learn the stroke style from a single style image is proposed. We use patch permutation to generate multiple training samples from the given style image. A patch discriminator that can simultaneously process patch-wise images and natural images seamlessly is designed. We also propose a local texture descriptor based criterion to quantitatively evaluate the style transfer quality. Experimental results showed that our method can produce finer quality re-renderings from single style image with improved computational efficiency compared with many state-of-the-arts methods.