Abstract:Neural operators are efficient surrogate models for solving partial differential equations (PDEs), but their key components face challenges: (1) in order to improve accuracy, attention mechanisms suffer from computational inefficiency on large-scale meshes, and (2) spectral convolutions rely on the Fast Fourier Transform (FFT) on regular grids and assume a flat geometry, which causes accuracy degradation on irregular domains. To tackle these problems, we regard the matrix-vector operations in the standard attention mechanism on vectors in Euclidean space as bilinear forms and linear operators in vector spaces and generalize the attention mechanism to function spaces. This new attention mechanism is fully equivalent to the standard attention but impossible to compute due to the infinite dimensionality of function spaces. To address this, inspired by model reduction techniques, we propose a Subspace Parameterized Attention (SUPRA) neural operator, which approximates the attention mechanism within a finite-dimensional subspace. To construct a subspace on irregular domains for SUPRA, we propose using the Laplacian eigenfunctions, which naturally adapt to domains' geometry and guarantee the optimal approximation for smooth functions. Experiments show that the SUPRA neural operator reduces error rates by up to 33% on various PDE datasets while maintaining state-of-the-art computational efficiency.