Abstract:The rapid progression in artificial intelligence has facilitated the emergence of large language models like ChatGPT, offering potential applications extending into specialized engineering modeling, especially physics-based building energy modeling. This paper investigates the innovative integration of large language models with building energy modeling software, focusing specifically on the fusion of ChatGPT with EnergyPlus. A literature review is first conducted to reveal a growing trend of incorporating of large language models in engineering modeling, albeit limited research on their application in building energy modeling. We underscore the potential of large language models in addressing building energy modeling challenges and outline potential applications including 1) simulation input generation, 2) simulation output analysis and visualization, 3) conducting error analysis, 4) co-simulation, 5) simulation knowledge extraction and training, and 6) simulation optimization. Three case studies reveal the transformative potential of large language models in automating and optimizing building energy modeling tasks, underscoring the pivotal role of artificial intelligence in advancing sustainable building practices and energy efficiency. The case studies demonstrate that selecting the right large language model techniques is essential to enhance performance and reduce engineering efforts. Besides direct use of large language models, three specific techniques were utilized: 1) prompt engineering, 2) retrieval-augmented generation, and 3) multi-agent large language models. The findings advocate a multidisciplinary approach in future artificial intelligence research, with implications extending beyond building energy modeling to other specialized engineering modeling.
Abstract:The potential of Machine Learning Control (MLC) in HVAC systems is hindered by its opaque nature and inference mechanisms, which is challenging for users and modelers to fully comprehend, ultimately leading to a lack of trust in MLC-based decision-making. To address this challenge, this paper investigates and explores Interpretable Machine Learning (IML), a branch of Machine Learning (ML) that enhances transparency and understanding of models and their inferences, to improve the credibility of MLC and its industrial application in HVAC systems. Specifically, we developed an innovative framework that combines the principles of Shapley values and the in-context learning feature of Large Language Models (LLMs). While the Shapley values are instrumental in dissecting the contributions of various features in ML models, LLM provides an in-depth understanding of rule-based parts in MLC; combining them, LLM further packages these insights into a coherent, human-understandable narrative. The paper presents a case study to demonstrate the feasibility of the developed IML framework for model predictive control-based precooling under demand response events in a virtual testbed. The results indicate that the developed framework generates and explains the control signals in accordance with the rule-based rationale.
Abstract:In recent years, the rapid advancement and impressive capabilities of Large Language Models (LLMs) have been evident across various domains. This paper explores the application, implications, and potential of LLMs in building energy efficiency and decarbonization studies. The wide-ranging capabilities of LLMs are examined in the context of the building energy field, including intelligent control systems, code generation, data infrastructure, knowledge extraction, and education. Despite the promising potential of LLMs, challenges including complex and expensive computation, data privacy, security and copyright, complexity in fine-tuned LLMs, and self-consistency are discussed. The paper concludes with a call for future research focused on the enhancement of LLMs for domain-specific tasks, multi-modal LLMs, and collaborative research between AI and energy experts.