Abstract:The rapid development of Large Language Models (LLMs) has significantly enhanced the general capabilities of machine translation. However, as application scenarios become more complex, the limitations of LLMs in vertical domain translations are gradually becoming apparent. In this study, we focus on how to construct translation LLMs that meet the needs of domain customization. We take visual media subtitle translation as our topic and explore how to train expressive and vivid translation LLMs. We investigated the situations of subtitle translation and other domains of literal and liberal translation, verifying the reliability of LLM as reward model and evaluator for translation. Additionally, to train an expressive translation LLM, we constructed and released a multidirectional subtitle parallel corpus dataset and proposed the Adaptive Local Preference Optimization (ALPO) method to address fine-grained preference alignment. Experimental results demonstrate that ALPO achieves outstanding performance in multidimensional evaluation of translation quality.
Abstract:Interlingual subtitling, which translates subtitles of visual media into a target language, is essential for entertainment localization but has not yet been explored in machine translation. Although Large Language Models (LLMs) have significantly advanced the general capabilities of machine translation, the distinctive characteristics of subtitle texts pose persistent challenges in interlingual subtitling, particularly regarding semantic coherence, pronoun and terminology translation, and translation expressiveness. To address these issues, we present Hermes, an LLM-based automated subtitling framework. Hermes integrates three modules: Speaker Diarization, Terminology Identification, and Expressiveness Enhancement, which effectively tackle the above challenges. Experiments demonstrate that Hermes achieves state-of-the-art diarization performance and generates expressive, contextually coherent translations, thereby advancing research in interlingual subtitling.
Abstract:Video dubbing aims to translate original speech in visual media programs from the source language to the target language, relying on neural machine translation and text-to-speech technologies. Due to varying information densities across languages, target speech often mismatches the source speech duration, causing audio-video synchronization issues that significantly impact viewer experience. In this study, we approach duration alignment in LLM-based video dubbing machine translation as a preference optimization problem. We propose the Segment Supervised Preference Optimization (SSPO) method, which employs a segment-wise sampling strategy and fine-grained loss to mitigate duration mismatches between source and target lines. Experimental results demonstrate that SSPO achieves superior performance in duration alignment tasks.
Abstract:With the development of deep learning, speech enhancement has been greatly optimized in terms of speech quality. Previous methods typically focus on the discriminative supervised learning or generative modeling, which tends to introduce speech distortions or high computational cost. In this paper, we propose MDDM, a Multi-view Discriminative enhanced Diffusion-based Model. Specifically, we take the features of three domains (time, frequency and noise) as inputs of a discriminative prediction network, generating the preliminary spectrogram. Then, the discriminative output can be converted to clean speech by several inference sampling steps. Due to the intersection of the distributions between discriminative output and clean target, the smaller sampling steps can achieve the competitive performance compared to other diffusion-based methods. Experiments conducted on a public dataset and a realworld dataset validate the effectiveness of MDDM, either on subjective or objective metric.