Abstract:Federated learning (FL) allows edge devices to collaboratively train models without sharing local data. As FL gains popularity, clients may need to train multiple unrelated FL models, but communication constraints limit their ability to train all models simultaneously. While clients could train FL models sequentially, opportunistically having FL clients concurrently train different models -- termed multi-model federated learning (MMFL) -- can reduce the overall training time. Prior work uses simple client-to-model assignments that do not optimize the contribution of each client to each model over the course of its training. Prior work on single-model FL shows that intelligent client selection can greatly accelerate convergence, but na\"ive extensions to MMFL can violate heterogeneous resource constraints at both the server and the clients. In this work, we develop a novel convergence analysis of MMFL with arbitrary client sampling methods, theoretically demonstrating the strengths and limitations of previous well-established gradient-based methods. Motivated by this analysis, we propose MMFL-LVR, a loss-based sampling method that minimizes training variance while explicitly respecting communication limits at the server and reducing computational costs at the clients. We extend this to MMFL-StaleVR, which incorporates stale updates for improved efficiency and stability, and MMFL-StaleVRE, a lightweight variant suitable for low-overhead deployment. Experiments show our methods improve average accuracy by up to 19.1% over random sampling, with only a 5.4% gap from the theoretical optimum (full client participation).
Abstract:We present a novel approach in the domain of federated learning (FL), particularly focusing on addressing the challenges posed by modality heterogeneity, variability in modality availability across clients, and the prevalent issue of missing data. We introduce a meta-learning framework specifically designed for multimodal federated tasks. Our approach is motivated by the need to enable federated models to robustly adapt when exposed to new modalities, a common scenario in FL where clients often differ in the number of available modalities. The effectiveness of our proposed framework is demonstrated through extensive experimentation on an augmented MNIST dataset, enriched with audio and sign language data. We demonstrate that the proposed algorithm achieves better performance than the baseline on a subset of missing modality scenarios with careful tuning of the meta-learning rates. This is a shortened report, and our work will be extended and updated soon.