Abstract:Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, validates them through rigorous experimentation, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We hope these insights will deepen understanding of current progress and risks in AI Scientist development.




Abstract:Dataset bias is a significant problem in training fair classifiers. When attributes unrelated to classification exhibit strong biases towards certain classes, classifiers trained on such dataset may overfit to these bias attributes, substantially reducing the accuracy for minority groups. Mitigation techniques can be categorized according to the availability of bias information (\ie, prior knowledge). Although scenarios with unknown biases are better suited for real-world settings, previous work in this field often suffers from a lack of interpretability regarding biases and lower performance. In this study, we propose a framework to identify potential biases as keywords without prior knowledge based on the partial occurrence in the captions. We further propose two debiasing methods: (a) handing over to an existing debiasing approach which requires prior knowledge by assigning pseudo-labels, and (b) employing data augmentation via text-to-image generative models, using acquired bias keywords as prompts. Despite its simplicity, experimental results show that our framework not only outperforms existing methods without prior knowledge, but also is even comparable with a method that assumes prior knowledge.