Abstract:The field of hypothesis generation promises to reduce costs in neuroscience by narrowing the range of interventional studies needed to study various phenomena. Existing machine learning methods can generate scientific hypotheses from complex datasets, but many approaches assume causal relationships are static over time, limiting their applicability to systems with dynamic, state-dependent behavior, such as the brain. While some techniques attempt dynamic causal discovery through factor models, they often restrict relationships to linear patterns or impose other simplifying assumptions. We propose a novel method that models dynamic graphs as a conditionally weighted superposition of static graphs, where each static graph can capture nonlinear relationships. This approach enables the detection of complex, time-varying interactions between variables beyond linear limitations. Our method improves f1-scores of predicted dynamic causal patterns by roughly 22-28% on average over baselines in some of our experiments, with some improvements reaching well over 60%. A case study on real brain data demonstrates our method's ability to uncover relationships linked to specific behavioral states, offering valuable insights into neural dynamics.
Abstract:It is notoriously difficult to control the behavior of artificial neural networks such as generative neural language models. We recast the problem of controlling natural language generation as that of learning to interface with a pretrained language model, just as Application Programming Interfaces (APIs) control the behavior of programs by altering hyperparameters. In this new paradigm, a specialized neural network (called a Neural Programming Interface or NPI) learns to interface with a pretrained language model by manipulating the hidden activations of the pretrained model to produce desired outputs. Importantly, no permanent changes are made to the weights of the original model, allowing us to re-purpose pretrained models for new tasks without overwriting any aspect of the language model. We also contribute a new data set construction algorithm and GAN-inspired loss function that allows us to train NPI models to control outputs of autoregressive transformers. In experiments against other state-of-the-art approaches, we demonstrate the efficacy of our methods using OpenAI's GPT-2 model, successfully controlling noun selection, topic aversion, offensive speech filtering, and other aspects of language while largely maintaining the controlled model's fluency under deterministic settings.