Abstract:Major depressive disorder (MDD) impacts more than 300 million people worldwide, highlighting a significant public health issue. However, the uneven distribution of medical resources and the complexity of diagnostic methods have resulted in inadequate attention to this disorder in numerous countries and regions. This paper introduces a high-performance MDD diagnosis tool named MDD-LLM, an AI-driven framework that utilizes fine-tuned large language models (LLMs) and extensive real-world samples to tackle challenges in MDD diagnosis. Therefore, we select 274,348 individual information from the UK Biobank cohort to train and evaluate the proposed method. Specifically, we select 274,348 individual records from the UK Biobank cohort and design a tabular data transformation method to create a large corpus for training and evaluating the proposed approach. To illustrate the advantages of MDD-LLM, we perform comprehensive experiments and provide several comparative analyses against existing model-based solutions across multiple evaluation metrics. Experimental results show that MDD-LLM (70B) achieves an accuracy of 0.8378 and an AUC of 0.8919 (95% CI: 0.8799 - 0.9040), significantly outperforming existing machine learning and deep learning frameworks for MDD diagnosis. Given the limited exploration of LLMs in MDD diagnosis, we examine numerous factors that may influence the performance of our proposed method, such as tabular data transformation techniques and different fine-tuning strategies.
Abstract:This paper presents a novel multimodal perception system for a real open environment. The proposed system includes an embedded computation platform, cameras, ultrasonic sensors, GPS, and IMU devices. Unlike the traditional frameworks, our system integrates multiple sensors with advanced computer vision algorithms to help users walk outside reliably. The system can efficiently complete various tasks, including navigating to specific locations, passing through obstacle regions, and crossing intersections. Specifically, we also use ultrasonic sensors and depth cameras to enhance obstacle avoidance performance. The path planning module is designed to find the locally optimal route based on various feedback and the user's current state. To evaluate the performance of the proposed system, we design several experiments under different scenarios. The results show that the system can help users walk efficiently and independently in complex situations.