Abstract:Causal reasoning is essential for business process interventions and improvement, requiring a clear understanding of causal relationships among activity execution times in an event log. Recent work introduced a method for discovering causal process models but lacked the ability to capture alternating causal conditions across multiple variants. This raises the challenges of handling missing values and expressing the alternating conditions among log splits when blending traces with varying activities. We propose a novel method to unify multiple causal process variants into a consistent model that preserves the correctness of the original causal models, while explicitly representing their causal-flow alternations. The method is formally defined, proved, evaluated on three open and two proprietary datasets, and released as an open-source implementation.
Abstract:AI agents that leverage Large Language Models (LLMs) are increasingly becoming core building blocks of modern software systems. A wide range of frameworks is now available to support the specification of such applications. These frameworks enable the definition of agent setups using natural language prompting, which specifies the roles, goals, and tools assigned to the various agents involved. Within such setups, agent behavior is non-deterministic for any given input, highlighting the critical need for robust debugging and observability tools. In this work, we explore the use of process and causal discovery applied to agent execution trajectories as a means of enhancing developer observability. This approach aids in monitoring and understanding the emergent variability in agent behavior. Additionally, we complement this with LLM-based static analysis techniques to distinguish between intended and unintended behavioral variability. We argue that such instrumentation is essential for giving developers greater control over evolving specifications and for identifying aspects of functionality that may require more precise and explicit definitions.
Abstract:A crucial element in predicting the outcomes of process interventions and making informed decisions about the process is unraveling the genuine relationships between the execution of process activities. Contemporary process discovery algorithms exploit time precedence as their main source of model derivation. Such reliance can sometimes be deceiving from a causal perspective. This calls for faithful new techniques to discover the true execution dependencies among the tasks in the process. To this end, our work offers a systematic approach to the unveiling of the true causal business process by leveraging an existing causal discovery algorithm over activity timing. In addition, this work delves into a set of conditions under which process mining discovery algorithms generate a model that is incongruent with the causal business process model, and shows how the latter model can be methodologically employed for a sound analysis of the process. Our methodology searches for such discrepancies between the two models in the context of three causal patterns, and derives a new view in which these inconsistencies are annotated over the mined process model. We demonstrate our methodology employing two open process mining algorithms, the IBM Process Mining tool, and the LiNGAM causal discovery technique. We apply it on a synthesized dataset and on two open benchmark data sets.