Abstract:The utilization of radio frequency (RF) signals for wireless sensing has garnered increasing attention. However, the radio environment is unpredictable and often unfavorable, the sensing accuracy of traditional RF sensing methods is often affected by adverse propagation channels from the transmitter to the receiver, such as fading and noise. In this paper, we propose employing distributed Reconfigurable Intelligent Metasurface Antennas (RIMSA) to detect the presence and location of objects where multiple RIMSA receivers (RIMSA Rxs) are deployed on different places. By programming their beamforming patterns, RIMSA Rxs can enhance the quality of received signals. The RF sensing problem is modeled as a joint optimization problem of beamforming pattern and mapping of received signals to sensing outcomes. To address this challenge, we introduce a deep reinforcement learning (DRL) algorithm aimed at calculating the optimal beamforming patterns and a neural network aimed at converting received signals into sensing outcomes. In addition, the malicious attacker may potentially launch jamming attack to disrupt sensing process. To enable effective sensing in interferenceprone environment, we devise a combined loss function that takes into account the Signal to Interference plus Noise Ratio (SINR) of the received signals. The simulation results show that the proposed distributed RIMSA system can achieve more efficient sensing performance and better overcome environmental influences than centralized implementation. Furthermore, the introduced method ensures high-accuracy sensing performance even under jamming attack.
Abstract:Recently, DL has been exploited in wireless communications such as modulation classification. However, due to the openness of wireless channel and unexplainability of DL, it is also vulnerable to adversarial attacks. In this correspondence, we investigate a so called hidden backdoor attack to modulation classification, where the adversary puts elaborately designed poisoned samples on the basis of IQ sequences into training dataset. These poisoned samples are hidden because it could not be found by traditional classification methods. And poisoned samples are same to samples with triggers which are patched samples in feature space. We show that the hidden backdoor attack can reduce the accuracy of modulation classification significantly with patched samples. At last, we propose activation cluster to detect abnormal samples in training dataset.