Abstract:Device recognition is vital for security in wireless communication systems, particularly for applications like access control. Radio Frequency Fingerprint Identification (RFFI) offers a non-cryptographic solution by exploiting hardware-induced signal distortions. This paper proposes HyDRA, a Hybrid Dual-mode RF Architecture that integrates an optimized Variational Mode Decomposition (VMD) with a novel architecture based on the fusion of Convolutional Neural Networks (CNNs), Transformers, and Mamba components, designed to support both closed-set and open-set classification tasks. The optimized VMD enhances preprocessing efficiency and classification accuracy by fixing center frequencies and using closed-form solutions. HyDRA employs the Transformer Dynamic Sequence Encoder (TDSE) for global dependency modeling and the Mamba Linear Flow Encoder (MLFE) for linear-complexity processing, adapting to varying conditions. Evaluation on public datasets demonstrates state-of-the-art (SOTA) accuracy in closed-set scenarios and robust performance in our proposed open-set classification method, effectively identifying unauthorized devices. Deployed on NVIDIA Jetson Xavier NX, HyDRA achieves millisecond-level inference speed with low power consumption, providing a practical solution for real-time wireless authentication in real-world environments.