Abstract:Traditional Automated Speaking Assessment (ASA) systems exhibit inherent modality limitations: text-based approaches lack acoustic information while audio-based methods miss semantic context. Multimodal Large Language Models (MLLM) offer unprecedented opportunities for comprehensive ASA by simultaneously processing audio and text within unified frameworks. This paper presents a very first systematic study of MLLM for comprehensive ASA, demonstrating the superior performance of MLLM across the aspects of content and language use . However, assessment on the delivery aspect reveals unique challenges, which is deemed to require specialized training strategies. We thus propose Speech-First Multimodal Training (SFMT), leveraging a curriculum learning principle to establish more robust modeling foundations of speech before cross-modal synergetic fusion. A series of experiments on a benchmark dataset show MLLM-based systems can elevate the holistic assessment performance from a PCC value of 0.783 to 0.846. In particular, SFMT excels in the evaluation of the delivery aspect, achieving an absolute accuracy improvement of 4% over conventional training approaches, which also paves a new avenue for ASA.
Abstract:A recent line of research on spoken language assessment (SLA) employs neural models such as BERT and wav2vec 2.0 (W2V) to evaluate speaking proficiency across linguistic and acoustic modalities. Although both models effectively capture features relevant to oral competence, each exhibits modality-specific limitations. BERT-based methods rely on ASR transcripts, which often fail to capture prosodic and phonetic cues for SLA. In contrast, W2V-based methods excel at modeling acoustic features but lack semantic interpretability. To overcome these limitations, we propose a system that integrates W2V with Phi-4 multimodal large language model (MLLM) through a score fusion strategy. The proposed system achieves a root mean square error (RMSE) of 0.375 on the official test set of the Speak & Improve Challenge 2025, securing second place in the competition. For comparison, the RMSEs of the top-ranked, third-ranked, and official baseline systems are 0.364, 0.384, and 0.444, respectively.