Abstract:Estimating individualized treatment effects from observational data presents a persistent challenge due to unmeasured confounding and structural bias. Causal Machine Learning (causal ML) methods, such as causal trees and doubly robust estimators, provide tools for estimating conditional average treatment effects. These methods have limited effectiveness in complex real-world environments due to the presence of latent confounders or those described in unstructured formats. Moreover, reliance on domain experts for confounder identification and rule interpretation introduces high annotation cost and scalability concerns. In this work, we proposed Large Language Model-based agents for automated confounder discovery and subgroup analysis that integrate agents into the causal ML pipeline to simulate domain expertise. Our framework systematically performs subgroup identification and confounding structure discovery by leveraging the reasoning capabilities of LLM-based agents, which reduces human dependency while preserving interpretability. Experiments on real-world medical datasets show that our proposed approach enhances treatment effect estimation robustness by narrowing confidence intervals and uncovering unrecognized confounding biases. Our findings suggest that LLM-based agents offer a promising path toward scalable, trustworthy, and semantically aware causal inference.
Abstract:Classification problems have made significant progress due to the maturity of artificial intelligence (AI). However, differentiating items from categories without noticeable boundaries is still a huge challenge for machines -- which is also crucial for machines to be intelligent. In order to study the fuzzy concept on classification, we define and propose a globalness detection with the four-stage operational flow. We then demonstrate our framework on Facebook public pages inter-like graph with their geo-location. Our prediction algorithm achieves high precision (89%) and recall (88%) of local pages. We evaluate the results on both states and countries level, finding that the global node ratios are relatively high in those states (NY, CA) having large and international cities. Several global nodes examples have also been shown and studied in this paper. It is our hope that our results unveil the perfect value from every classification problem and provide a better understanding of global and local nodes in Online Social Networks (OSNs).