Abstract:Referring camouflaged object detection (Ref-COD) aims to identify hidden objects by incorporating reference information such as images and text descriptions. Previous research has transformed reference images with salient objects into one-dimensional prompts, yielding significant results. We explore ways to enhance performance through multi-context fusion of rich salient image features and camouflaged object features. Therefore, we propose RFMNet, which utilizes features from multiple encoding stages of the reference salient images and performs interactive fusion with the camouflage features at the corresponding encoding stages. Given that the features in salient object images contain abundant object-related detail information, performing feature fusion within local areas is more beneficial for detecting camouflaged objects. Therefore, we propose an Overlapped Windows Cross-attention mechanism to enable the model to focus more attention on the local information matching based on reference features. Besides, we propose the Referring Feature Aggregation (RFA) module to decode and segment the camouflaged objects progressively. Extensive experiments on the Ref-COD benchmark demonstrate that our method achieves state-of-the-art performance.
Abstract:The integration of multi-modal Magnetic Resonance Imaging (MRI) and clinical data holds great promise for enhancing the diagnosis of neurological disorders (NDs) in real-world clinical settings. Deep Learning (DL) has recently emerged as a powerful tool for extracting meaningful patterns from medical data to aid in diagnosis. However, existing DL approaches struggle to effectively leverage multi-modal MRI and clinical data, leading to suboptimal performance. To address this challenge, we utilize a unique, proprietary multi-modal clinical dataset curated for ND research. Based on this dataset, we propose a novel transformer-based Mixture-of-Experts (MoE) framework for ND classification, leveraging multiple MRI modalities-anatomical (aMRI), Diffusion Tensor Imaging (DTI), and functional (fMRI)-alongside clinical assessments. Our framework employs transformer encoders to capture spatial relationships within volumetric MRI data while utilizing modality-specific experts for targeted feature extraction. A gating mechanism with adaptive fusion dynamically integrates expert outputs, ensuring optimal predictive performance. Comprehensive experiments and comparisons with multiple baselines demonstrate that our multi-modal approach significantly enhances diagnostic accuracy, particularly in distinguishing overlapping disease states. Our framework achieves a validation accuracy of 82.47\%, outperforming baseline methods by over 10\%, highlighting its potential to improve ND diagnosis by applying multi-modal learning to real-world clinical data.