Abstract:Vision Language Models (VLMs) achieve strong performance on multimodal tasks but still suffer from hallucination and safety-related failures that persist even at scale. Steering offers a lightweight technique to improve model performance. However, steering, whether input-dependent or input-independent, achieves a meaningful trade-off between efficiency and effectiveness. In this work, we observe that steering vectors can generalize across inputs when tasks share aligned semantic intent. Based on this insight, we propose \textbf{OSGA} (\textbf{O}ne-shot \textbf{S}teering with \textbf{G}enerative \textbf{A}nchor), an input-independent framework that improves model performance with a single optimization instance. OSGA first selects an informative sample via a variance-based data selection strategy and learns a single steering vector with a contrastive objective with generative anchor regularization. The resulting vector can be universally applied at a certain layer during inference time without modifying model parameters. Experiments across multiple benchmarks show that a single OSGA-optimized steering vector consistently improves hallucination mitigation and safety enhancement with negligible overhead, highlighting one-shot steering as a practical and scalable solution for reliable VLMs.
Abstract:Multimodal large language models (MLLMs) have achieved remarkable success across diverse vision-language tasks, yet they remain highly susceptible to hallucinations, producing content that is fluent but inconsistent with visual evidence. Such hallucinations, spanning objects, attributes, and relations, persist even in larger models, while existing mitigation approaches often require additional finetuning, handcrafted priors, or trade-offs that compromise informativeness and scalability. To address this limitation, we propose a training-free, self-supervised method for hallucination mitigation. Our approach introduces a novel hallucination amplification mechanism: a caption is projected into the visual space via a text-to-image model to reveal implicit hallucination signals, serving as a negative anchor, while the original image provides a positive anchor. Leveraging these dual anchors, we edit decoder hidden states by pulling representations toward faithful semantics and pushing them away from hallucination directions. This correction requires no human priors or additional training costs, ensuring both effectiveness and efficiency. Extensive experiments across multiple benchmarks show that our method significantly reduces hallucinations at the object, attribute, and relation levels while largely preserving recall and caption richness, e.g., achieving a hallucination reduction by over 5% using LLaVA-v1.5-7B on CHAIR. Furthermore, results on diverse architectures, including LLaVA-NEXT-7B, Cambrian-8B, and InstructBLIP-7B, validate strong cross-architecture generalization. More importantly, when applied to hallucination-free captions, our method introduces almost no side effects, underscoring its robustness and practical plug-and-play applicability. The implementation will be publicly available.