Abstract:To extend the application of vision-language models (VLMs) from web images to sensor-mediated physical environments, we propose Multi-View Physical-prompt for Test-Time Adaptation (MVP), a forward-only framework that moves test-time adaptation (TTA) from tokens to photons by treating the camera exposure triangle--ISO, shutter speed, and aperture--as physical prompts. At inference, MVP acquires a library of physical views per scene, selects the top-k sensor settings using a source-affinity score, evaluates each retained view under lightweight digital augmentations, filters the lowest-entropy subset of augmented views, and aggregates predictions with Zero-temperature softmax (i.e., hard voting). This selection-then-vote design is simple, calibration-friendly, and requires no gradients or model modifications. On ImageNet-ES and ImageNet-ES-Diverse, MVP consistently outperforms digital-only TTA on single Auto-Exposure captures, by up to 25.6 percentage points (pp), and delivers up to 3.4 pp additional gains over pipelines that combine conventional sensor control with TTA. MVP remains effective under reduced parameter candidate sets that lower capture latency, demonstrating practicality. These results support the main claim that, beyond post-capture prompting, measurement-time control--selecting and combining real physical views--substantially improves robustness for VLMs.
Abstract:Modern on-device neural network applications must operate under resource constraints while adapting to unpredictable domain shifts. However, this combined challenge-model compression and domain adaptation-remains largely unaddressed, as prior work has tackled each issue in isolation: compressed networks prioritize efficiency within a fixed domain, whereas large, capable models focus on handling domain shifts. In this work, we propose CoDA, a frequency composition-based framework that unifies compression and domain adaptation. During training, CoDA employs quantization-aware training (QAT) with low-frequency components, enabling a compressed model to selectively learn robust, generalizable features. At test time, it refines the compact model in a source-free manner (i.e., test-time adaptation, TTA), leveraging the full-frequency information from incoming data to adapt to target domains while treating high-frequency components as domain-specific cues. LFC are aligned with the trained distribution, while HFC unique to the target distribution are solely utilized for batch normalization. CoDA can be integrated synergistically into existing QAT and TTA methods. CoDA is evaluated on widely used domain-shift benchmarks, including CIFAR10-C and ImageNet-C, across various model architectures. With significant compression, it achieves accuracy improvements of 7.96%p on CIFAR10-C and 5.37%p on ImageNet-C over the full-precision TTA baseline.