Abstract:Algorithmic fairness in clustering aims to balance the proportions of instances assigned to each cluster with respect to a given sensitive attribute. While recently developed fair clustering algorithms optimize clustering objectives under specific fairness constraints, their inherent complexity or approximation often results in suboptimal clustering utility or numerical instability in practice. To resolve these limitations, we propose a new fair clustering algorithm based on a novel decomposition of the fair K-means clustering objective function. The proposed algorithm, called Fair Clustering via Alignment (FCA), operates by alternately (i) finding a joint probability distribution to align the data from different protected groups, and (ii) optimizing cluster centers in the aligned space. A key advantage of FCA is that it theoretically guarantees approximately optimal clustering utility for any given fairness level without complex constraints, thereby enabling high-utility fair clustering in practice. Experiments show that FCA outperforms existing methods by (i) attaining a superior trade-off between fairness level and clustering utility, and (ii) achieving near-perfect fairness without numerical instability.
Abstract:Robust domain adaptation against adversarial attacks is a critical research area that aims to develop models capable of maintaining consistent performance across diverse and challenging domains. In this paper, we derive a new generalization bound for robust risk on the target domain using a novel divergence measure specifically designed for robust domain adaptation. Building upon this, we propose a new algorithm named TAROT, which is designed to enhance both domain adaptability and robustness. Through extensive experiments, TAROT not only surpasses state-of-the-art methods in accuracy and robustness but also significantly enhances domain generalization and scalability by effectively learning domain-invariant features. In particular, TAROT achieves superior performance on the challenging DomainNet dataset, demonstrating its ability to learn domain-invariant representations that generalize well across different domains, including unseen ones. These results highlight the broader applicability of our approach in real-world domain adaptation scenarios.
Abstract:AI fairness, also known as algorithmic fairness, aims to ensure that algorithms operate without bias or discrimination towards any individual or group. Among various AI algorithms, the Fair Representation Learning (FRL) approach has gained significant interest in recent years. However, existing FRL algorithms have a limitation: they are primarily designed for categorical sensitive attributes and thus cannot be applied to continuous sensitive attributes, such as age or income. In this paper, we propose an FRL algorithm for continuous sensitive attributes. First, we introduce a measure called the Expectation of Integral Probability Metrics (EIPM) to assess the fairness level of representation space for continuous sensitive attributes. We demonstrate that if the distribution of the representation has a low EIPM value, then any prediction head constructed on the top of the representation become fair, regardless of the selection of the prediction head. Furthermore, EIPM possesses a distinguished advantage in that it can be accurately estimated using our proposed estimator with finite samples. Based on these properties, we propose a new FRL algorithm called Fair Representation using EIPM with MMD (FREM). Experimental evidences show that FREM outperforms other baseline methods.
Abstract:We propose a parametric integral probability metric (IPM) to measure the discrepancy between two probability measures. The proposed IPM leverages a specific parametric family of discriminators, such as single-node neural networks with ReLU activation, to effectively distinguish between distributions, making it applicable in high-dimensional settings. By optimizing over the parameters of the chosen discriminator class, the proposed IPM demonstrates that its estimators have good convergence rates and can serve as a surrogate for other IPMs that use smooth nonparametric discriminator classes. We present an efficient algorithm for practical computation, offering a simple implementation and requiring fewer hyperparameters. Furthermore, we explore its applications in various tasks, such as covariate balancing for causal inference and fair representation learning. Across such diverse applications, we demonstrate that the proposed IPM provides strong theoretical guarantees, and empirical experiments show that it achieves comparable or even superior performance to other methods.
Abstract:Interpretability for machine learning models is becoming more and more important as machine learning models become more complex. The functional ANOVA model, which decomposes a high-dimensional function into a sum of lower dimensional functions so called components, is one of the most popular tools for interpretable AI, and recently, various neural network models have been developed for estimating each component in the functional ANOVA model. However, such neural networks are highly unstable when estimating components since the components themselves are not uniquely defined. That is, there are multiple functional ANOVA decompositions for a given function. In this paper, we propose a novel interpretable model which guarantees a unique functional ANOVA decomposition and thus is able to estimate each component stably. We call our proposed model ANOVA-NODE since it is a modification of Neural Oblivious Decision Ensembles (NODE) for the functional ANOVA model. Theoretically, we prove that ANOVA-NODE can approximate a smooth function well. Additionally, we experimentally show that ANOVA-NODE provides much more stable estimation of each component and thus much more stable interpretation when training data and initial values of the model parameters vary than existing neural network models do.
Abstract:Group fairness requires that different protected groups, characterized by a given sensitive attribute, receive equal outcomes overall. Typically, the level of group fairness is measured by the statistical gap between predictions from different protected groups. In this study, we reveal an implicit property of existing group fairness measures, which provides an insight into how the group-fair models behave. Then, we develop a new group-fair constraint based on this implicit property to learn group-fair models. To do so, we first introduce a notable theoretical observation: every group-fair model has an implicitly corresponding transport map between the input spaces of each protected group. Based on this observation, we introduce a new group fairness measure termed Matched Demographic Parity (MDP), which quantifies the averaged gap between predictions of two individuals (from different protected groups) matched by a given transport map. Then, we prove that any transport map can be used in MDP to learn group-fair models, and develop a novel algorithm called Fairness Through Matching (FTM), which learns a group-fair model using MDP constraint with an user-specified transport map. We specifically propose two favorable types of transport maps for MDP, based on the optimal transport theory, and discuss their advantages. Experiments reveal that FTM successfully trains group-fair models with certain desirable properties by choosing the transport map accordingly.
Abstract:There are two things to be considered when we evaluate predictive models. One is prediction accuracy,and the other is interpretability. Over the recent decades, many prediction models of high performance, such as ensemble-based models and deep neural networks, have been developed. However, these models are often too complex, making it difficult to intuitively interpret their predictions. This complexity in interpretation limits their use in many real-world fields that require accountability, such as medicine, finance, and college admissions. In this study, we develop a novel method called Meta-ANOVA to provide an interpretable model for any given prediction model. The basic idea of Meta-ANOVA is to transform a given black-box prediction model to the functional ANOVA model. A novel technical contribution of Meta-ANOVA is a procedure of screening out unnecessary interaction before transforming a given black-box model to the functional ANOVA model. This screening procedure allows the inclusion of higher order interactions in the transformed functional ANOVA model without computational difficulties. We prove that the screening procedure is asymptotically consistent. Through various experiments with synthetic and real-world datasets, we empirically demonstrate the superiority of Meta-ANOVA
Abstract:Bayesian approaches for training deep neural networks (BNNs) have received significant interest and have been effectively utilized in a wide range of applications. There have been several studies on the properties of posterior concentrations of BNNs. However, most of these studies only demonstrate results in BNN models with sparse or heavy-tailed priors. Surprisingly, no theoretical results currently exist for BNNs using Gaussian priors, which are the most commonly used one. The lack of theory arises from the absence of approximation results of Deep Neural Networks (DNNs) that are non-sparse and have bounded parameters. In this paper, we present a new approximation theory for non-sparse DNNs with bounded parameters. Additionally, based on the approximation theory, we show that BNNs with non-sparse general priors can achieve near-minimax optimal posterior concentration rates to the true model.
Abstract:Adversarial robustness is a research area that has recently received a lot of attention in the quest for trustworthy artificial intelligence. However, recent works on adversarial robustness have focused on supervised learning where it is assumed that labeled data is plentiful. In this paper, we investigate semi-supervised adversarial training where labeled data is scarce. We derive two upper bounds for the robust risk and propose a regularization term for unlabeled data motivated by these two upper bounds. Then, we develop a semi-supervised adversarial training algorithm that combines the proposed regularization term with knowledge distillation using a semi-supervised teacher (i.e., a teacher model trained using a semi-supervised learning algorithm). Our experiments show that our proposed algorithm achieves state-of-the-art performance with significant margins compared to existing algorithms. In particular, compared to supervised learning algorithms, performance of our proposed algorithm is not much worse even when the amount of labeled data is very small. For example, our algorithm with only 8\% labeled data is comparable to supervised adversarial training algorithms that use all labeled data, both in terms of standard and robust accuracies on CIFAR-10.
Abstract:Semi-supervised learning (SSL) algorithm is a setup built upon a realistic assumption that access to a large amount of labeled data is tough. In this study, we present a generalized framework, named SCAR, standing for Selecting Clean samples with Adversarial Robustness, for improving the performance of recent SSL algorithms. By adversarially attacking pre-trained models with semi-supervision, our framework shows substantial advances in classifying images. We introduce how adversarial attacks successfully select high-confident unlabeled data to be labeled with current predictions. On CIFAR10, three recent SSL algorithms with SCAR result in significantly improved image classification.