Abstract:Obtaining pixel-level annotations in the medical domain is both expensive and time-consuming, often requiring close collaboration between clinical experts and developers. Semi-supervised medical image segmentation aims to leverage limited annotated data alongside abundant unlabeled data to achieve accurate segmentation. However, existing semi-supervised methods often struggle to structure semantic distributions in the latent space due to noise introduced by pseudo-labels. In this paper, we propose a novel diffusion-based framework for semi-supervised medical image segmentation. Our method introduces a constraint into the latent structure of semantic labels during the denoising diffusion process by enforcing prototype-based contrastive consistency. Rather than explicitly delineating semantic boundaries, the model leverages class prototypes centralized semantic representations in the latent space as anchors. This strategy improves the robustness of dense predictions, particularly in the presence of noisy pseudo-labels. We also introduce a new publicly available benchmark: Multi-Object Segmentation in X-ray Angiography Videos (MOSXAV), which provides detailed, manually annotated segmentation ground truth for multiple anatomical structures in X-ray angiography videos. Extensive experiments on the EndoScapes2023 and MOSXAV datasets demonstrate that our method outperforms state-of-the-art medical image segmentation approaches under the semi-supervised learning setting. This work presents a robust and data-efficient diffusion model that offers enhanced flexibility and strong potential for a wide range of clinical applications.
Abstract:Automated detection and segmentation of surgical devices, such as catheters or wires, in X-ray fluoroscopic images have the potential to enhance image guidance in minimally invasive heart surgeries. In this paper, we present a convolutional neural network model that integrates a resnet architecture with multiple prediction heads to achieve real-time, accurate localization of electrodes on catheters and catheter segmentation in an end-to-end deep learning framework. We also propose a multi-task learning strategy in which our model is trained to perform both accurate electrode detection and catheter segmentation simultaneously. A key challenge with this approach is achieving optimal performance for both tasks. To address this, we introduce a novel multi-level dynamic resource prioritization method. This method dynamically adjusts sample and task weights during training to effectively prioritize more challenging tasks, where task difficulty is inversely proportional to performance and evolves throughout the training process. Experiments on both public and private datasets have demonstrated that the accuracy of our method surpasses the existing state-of-the-art methods in both single segmentation task and in the detection and segmentation multi-task. Our approach achieves a good trade-off between accuracy and efficiency, making it well-suited for real-time surgical guidance applications.
Abstract:Biomedical image segmentation plays a vital role in diagnosis of diseases across various organs. Deep learning-based object detection methods are commonly used for such segmentation. There exists an extensive research in this topic. However, there is no standard review on this topic. Existing surveys often lack a standardized approach or focus on broader segmentation techniques. In this paper, we conducted a systematic literature review (SLR), collected and analysed 148 articles that explore deep learning object detection methods for biomedical image segmentation. We critically analyzed these methods, identified the key challenges, and discussed the future directions. From the selected articles we extracted the results including the deep learning models, targeted imaging modalities, targeted diseases, and the metrics for the analysis of the methods. The results have been presented in tabular and/or charted forms. The results are presented in three major categories including two stage detection models, one stage detection models and point-based detection models. Each article is individually analyzed along with its pros and cons. Finally, we discuss open challenges, potential benefits, and future research directions. This SLR aims to provide the research community with a quick yet deeper understanding of these segmentation models, ultimately facilitating the development of more powerful solutions for biomedical image analysis.