Abstract:Catalyst design is crucial for materials synthesis, especially for complex reaction networks. Strategies like collaborative catalytic systems and multifunctional catalysts are effective but face challenges at the nanoscale. Carbon nanotube synthesis contains complicated nanoscale catalytic reactions, thus achieving high-density, high-quality semiconducting CNTs demands innovative catalyst design. In this work, we present a holistic framework integrating machine learning into traditional catalyst design for semiconducting CNT synthesis. It combines knowledge-based insights with data-driven techniques. Three key components, including open-access electronic structure databases for precise physicochemical descriptors, pre-trained natural language processing-based embedding model for higher-level abstractions, and physical - driven predictive models based on experiment data, are utilized. Through this framework, a new method for selective semiconducting CNT synthesis via catalyst - mediated electron injection, tuned by light during growth, is proposed. 54 candidate catalysts are screened, and three with high potential are identified. High-throughput experiments validate the predictions, with semiconducting selectivity exceeding 91% and the FeTiO3 catalyst reaching 98.6%. This approach not only addresses semiconducting CNT synthesis but also offers a generalizable methodology for global catalyst design and nanomaterials synthesis, advancing materials science in precise control.
Abstract:Accurate medical image analysis can greatly assist clinical diagnosis, but its effectiveness relies on high-quality expert annotations Obtaining pixel-level labels for medical images, particularly fundus images, remains costly and time-consuming. Meanwhile, despite the success of deep learning in medical imaging, the lack of interpretability limits its clinical adoption. To address these challenges, we propose TWLR, a two-stage framework for interpretable diabetic retinopathy (DR) assessment. In the first stage, a vision-language model integrates domain-specific ophthalmological knowledge into text embeddings to jointly perform DR grading and lesion classification, effectively linking semantic medical concepts with visual features. The second stage introduces an iterative severity regression framework based on weakly-supervised semantic segmentation. Lesion saliency maps generated through iterative refinement direct a progressive inpainting mechanism that systematically eliminates pathological features, effectively downgrading disease severity toward healthier fundus appearances. Critically, this severity regression approach achieves dual benefits: accurate lesion localization without pixel-level supervision and providing an interpretable visualization of disease-to-healthy transformations. Experimental results on the FGADR, DDR, and a private dataset demonstrate that TWLR achieves competitive performance in both DR classification and lesion segmentation, offering a more explainable and annotation-efficient solution for automated retinal image analysis.
Abstract:We introduce obfuscation testing, a novel methodology for validating whether large language models detect structural market patterns through causal reasoning rather than temporal association. Testing three dealer hedging constraint patterns (gamma positioning, stock pinning, 0DTE hedging) on 242 trading days (95.6% coverage) of S&P 500 options data, we find LLMs achieve 71.5% detection rate using unbiased prompts that provide only raw gamma exposure values without regime labels or temporal context. The WHO-WHOM-WHAT causal framework forces models to identify the economic actors (dealers), affected parties (directional traders), and structural mechanisms (forced hedging) underlying observed market dynamics. Critically, detection accuracy (91.2%) remains stable even as economic profitability varies quarterly, demonstrating that models identify structural constraints rather than profitable patterns. When prompted with regime labels, detection increases to 100%, but the 71.5% unbiased rate validates genuine pattern recognition. Our findings suggest LLMs possess emergent capabilities for detecting complex financial mechanisms through pure structural reasoning, with implications for systematic strategy development, risk management, and our understanding of how transformer architectures process financial market dynamics.
Abstract:3D Gaussian Splatting (3DGS) achieves remarkable results in the field of surface reconstruction. However, when Gaussian normal vectors are aligned within the single-view projection plane, while the geometry appears reasonable in the current view, biases may emerge upon switching to nearby views. To address the distance and global matching challenges in multi-view scenes, we design multi-view normal and distance-guided Gaussian splatting. This method achieves geometric depth unification and high-accuracy reconstruction by constraining nearby depth maps and aligning 3D normals. Specifically, for the reconstruction of small indoor and outdoor scenes, we propose a multi-view distance reprojection regularization module that achieves multi-view Gaussian alignment by computing the distance loss between two nearby views and the same Gaussian surface. Additionally, we develop a multi-view normal enhancement module, which ensures consistency across views by matching the normals of pixel points in nearby views and calculating the loss. Extensive experimental results demonstrate that our method outperforms the baseline in both quantitative and qualitative evaluations, significantly enhancing the surface reconstruction capability of 3DGS. Our code will be made publicly available at (https://github.com/Bistu3DV/MND-GS/).
Abstract:Artificial intelligence is rapidly evolving towards multi-agent systems where numerous AI agents collaborate and interact with external tools. Two key open standards, Google's Agent to Agent (A2A) protocol for inter-agent communication and Anthropic's Model Context Protocol (MCP) for standardized tool access, promise to overcome the limitations of fragmented, custom integration approaches. While their potential synergy is significant, this paper argues that effectively integrating A2A and MCP presents unique, emergent challenges at their intersection, particularly concerning semantic interoperability between agent tasks and tool capabilities, the compounded security risks arising from combined discovery and execution, and the practical governance required for the envisioned "Agent Economy". This work provides a critical analysis, moving beyond a survey to evaluate the practical implications and inherent difficulties of combining these horizontal and vertical integration standards. We examine the benefits (e.g., specialization, scalability) while critically assessing their dependencies and trade-offs in an integrated context. We identify key challenges increased by the integration, including novel security vulnerabilities, privacy complexities, debugging difficulties across protocols, and the need for robust semantic negotiation mechanisms. In summary, A2A+MCP offers a vital architectural foundation, but fully realizing its potential requires substantial advancements to manage the complexities of their combined operation.
Abstract:Novel view synthesis has made significant progress in the field of 3D computer vision. However, the rendering of view-consistent novel views from imperfect camera poses remains challenging. In this paper, we introduce a hybrid bundle-adjusting 3D Gaussians model that enables view-consistent rendering with pose optimization. This model jointly extract image-based and neural 3D representations to simultaneously generate view-consistent images and camera poses within forward-facing scenes. The effective of our model is demonstrated through extensive experiments conducted on both real and synthetic datasets. These experiments clearly illustrate that our model can effectively optimize neural scene representations while simultaneously resolving significant camera pose misalignments. The source code is available at https://github.com/Bistu3DV/hybridBA.
Abstract:This paper proposes a novel method to improve the accuracy of product search in e-commerce by utilizing a cluster language model. The method aims to address the limitations of the bi-encoder architecture while maintaining a minimal additional training burden. The approach involves labeling top products for each query, generating semantically similar query clusters using the K-Means clustering algorithm, and fine-tuning a global language model into cluster language models on individual clusters. The parameters of each cluster language model are fine-tuned to learn local manifolds in the feature space efficiently, capturing the nuances of various query types within each cluster. The inference is performed by assigning a new query to its respective cluster and utilizing the corresponding cluster language model for retrieval. The proposed method results in more accurate and personalized retrieval results, offering a superior alternative to the popular bi-encoder based retrieval models in semantic search.




Abstract:Obtaining labelled data in a particular context could be expensive and time consuming. Although different algorithms, including unsupervised learning, semi-supervised learning, self-learning have been adopted, the performance of text classification varies with context. Given the lack of labelled dataset, we proposed a novel and simple unsupervised text classification model to classify cargo content in international shipping industry using the Standard International Trade Classification (SITC) codes. Our method stems from representing words using pretrained Glove Word Embeddings and finding the most likely label using Cosine Similarity. To compare unsupervised text classification model with supervised classification, we also applied several Transformer models to classify cargo content. Due to lack of training data, the SITC numerical codes and the corresponding textual descriptions were used as training data. A small number of manually labelled cargo content data was used to evaluate the classification performances of the unsupervised classification and the Transformer based supervised classification. The comparison reveals that unsupervised classification significantly outperforms Transformer based supervised classification even after increasing the size of the training dataset by 30%. Lacking training data is a key bottleneck that prohibits deep learning models (such as Transformers) from successful practical applications. Unsupervised classification can provide an alternative efficient and effective method to classify text when there is scarce training data.




Abstract:In this paper, we propose a novel supervised learning method that is called Deep Embedding Kernel (DEK). DEK combines the advantages of deep learning and kernel methods in a unified framework. More specifically, DEK is a learnable kernel represented by a newly designed deep architecture. Compared with pre-defined kernels, this kernel can be explicitly trained to map data to an optimized high-level feature space where data may have favorable features toward the application. Compared with typical deep learning using SoftMax or logistic regression as the top layer, DEK is expected to be more generalizable to new data. Experimental results show that DEK has superior performance than typical machine learning methods in identity detection, classification, regression, dimension reduction, and transfer learning.