Abstract:Artificial intelligence is rapidly evolving towards multi-agent systems where numerous AI agents collaborate and interact with external tools. Two key open standards, Google's Agent to Agent (A2A) protocol for inter-agent communication and Anthropic's Model Context Protocol (MCP) for standardized tool access, promise to overcome the limitations of fragmented, custom integration approaches. While their potential synergy is significant, this paper argues that effectively integrating A2A and MCP presents unique, emergent challenges at their intersection, particularly concerning semantic interoperability between agent tasks and tool capabilities, the compounded security risks arising from combined discovery and execution, and the practical governance required for the envisioned "Agent Economy". This work provides a critical analysis, moving beyond a survey to evaluate the practical implications and inherent difficulties of combining these horizontal and vertical integration standards. We examine the benefits (e.g., specialization, scalability) while critically assessing their dependencies and trade-offs in an integrated context. We identify key challenges increased by the integration, including novel security vulnerabilities, privacy complexities, debugging difficulties across protocols, and the need for robust semantic negotiation mechanisms. In summary, A2A+MCP offers a vital architectural foundation, but fully realizing its potential requires substantial advancements to manage the complexities of their combined operation.
Abstract:Novel view synthesis has made significant progress in the field of 3D computer vision. However, the rendering of view-consistent novel views from imperfect camera poses remains challenging. In this paper, we introduce a hybrid bundle-adjusting 3D Gaussians model that enables view-consistent rendering with pose optimization. This model jointly extract image-based and neural 3D representations to simultaneously generate view-consistent images and camera poses within forward-facing scenes. The effective of our model is demonstrated through extensive experiments conducted on both real and synthetic datasets. These experiments clearly illustrate that our model can effectively optimize neural scene representations while simultaneously resolving significant camera pose misalignments. The source code is available at https://github.com/Bistu3DV/hybridBA.
Abstract:This paper proposes a novel method to improve the accuracy of product search in e-commerce by utilizing a cluster language model. The method aims to address the limitations of the bi-encoder architecture while maintaining a minimal additional training burden. The approach involves labeling top products for each query, generating semantically similar query clusters using the K-Means clustering algorithm, and fine-tuning a global language model into cluster language models on individual clusters. The parameters of each cluster language model are fine-tuned to learn local manifolds in the feature space efficiently, capturing the nuances of various query types within each cluster. The inference is performed by assigning a new query to its respective cluster and utilizing the corresponding cluster language model for retrieval. The proposed method results in more accurate and personalized retrieval results, offering a superior alternative to the popular bi-encoder based retrieval models in semantic search.
Abstract:Obtaining labelled data in a particular context could be expensive and time consuming. Although different algorithms, including unsupervised learning, semi-supervised learning, self-learning have been adopted, the performance of text classification varies with context. Given the lack of labelled dataset, we proposed a novel and simple unsupervised text classification model to classify cargo content in international shipping industry using the Standard International Trade Classification (SITC) codes. Our method stems from representing words using pretrained Glove Word Embeddings and finding the most likely label using Cosine Similarity. To compare unsupervised text classification model with supervised classification, we also applied several Transformer models to classify cargo content. Due to lack of training data, the SITC numerical codes and the corresponding textual descriptions were used as training data. A small number of manually labelled cargo content data was used to evaluate the classification performances of the unsupervised classification and the Transformer based supervised classification. The comparison reveals that unsupervised classification significantly outperforms Transformer based supervised classification even after increasing the size of the training dataset by 30%. Lacking training data is a key bottleneck that prohibits deep learning models (such as Transformers) from successful practical applications. Unsupervised classification can provide an alternative efficient and effective method to classify text when there is scarce training data.
Abstract:In this paper, we propose a novel supervised learning method that is called Deep Embedding Kernel (DEK). DEK combines the advantages of deep learning and kernel methods in a unified framework. More specifically, DEK is a learnable kernel represented by a newly designed deep architecture. Compared with pre-defined kernels, this kernel can be explicitly trained to map data to an optimized high-level feature space where data may have favorable features toward the application. Compared with typical deep learning using SoftMax or logistic regression as the top layer, DEK is expected to be more generalizable to new data. Experimental results show that DEK has superior performance than typical machine learning methods in identity detection, classification, regression, dimension reduction, and transfer learning.