Abstract:Low-resolution image representation is a special form of sparse representation that retains only low-frequency information while discarding high-frequency components. This property reduces storage and transmission costs and benefits various image processing tasks. However, a key challenge is to preserve essential visual content while maintaining the ability to accurately reconstruct the original images. This work proposes LR2Flow, a nonlinear framework that learns low-resolution image representations by integrating wavelet tight frame blocks with normalizing flows. We conduct a reconstruction error analysis of the proposed network, which demonstrates the necessity of designing invertible neural networks in the wavelet tight frame domain. Experimental results on various tasks, including image rescaling, compression, and denoising, demonstrate the effectiveness of the learned representations and the robustness of the proposed framework.




Abstract:The data bottleneck has emerged as a fundamental challenge in learning based image restoration methods. Researchers have attempted to generate synthesized training data using paired or unpaired samples to address this challenge. This study proposes SeNM-VAE, a semi-supervised noise modeling method that leverages both paired and unpaired datasets to generate realistic degraded data. Our approach is based on modeling the conditional distribution of degraded and clean images with a specially designed graphical model. Under the variational inference framework, we develop an objective function for handling both paired and unpaired data. We employ our method to generate paired training samples for real-world image denoising and super-resolution tasks. Our approach excels in the quality of synthetic degraded images compared to other unpaired and paired noise modeling methods. Furthermore, our approach demonstrates remarkable performance in downstream image restoration tasks, even with limited paired data. With more paired data, our method achieves the best performance on the SIDD dataset.