Abstract:Neural Architecture Search (NAS) has proven effective in discovering new Convolutional Neural Network (CNN) architectures, particularly for scenarios with well-defined accuracy optimization goals. However, previous approaches often involve time-consuming training on super networks or intensive architecture sampling and evaluations. Although various zero-cost proxies correlated with CNN model accuracy have been proposed for efficient architecture search without training, their lack of hardware consideration makes it challenging to target highly resource-constrained edge devices such as microcontroller units (MCUs). To address these challenges, we introduce MONAS, a novel hardware-aware zero-shot NAS framework specifically designed for MCUs in edge computing. MONAS incorporates hardware optimality considerations into the search process through our proposed MCU hardware latency estimation model. By combining this with specialized performance indicators (proxies), MONAS identifies optimal neural architectures without incurring heavy training and evaluation costs, optimizing for both hardware latency and accuracy under resource constraints. MONAS achieves up to a 1104x improvement in search efficiency over previous work targeting MCUs and can discover CNN models with over 3.23x faster inference on MCUs while maintaining similar accuracy compared to more general NAS approaches.
Abstract:Images captured under low-light scenarios often suffer from low quality. Previous CNN-based deep learning methods often involve using Retinex theory. Nevertheless, most of them cannot perform well in more complicated datasets like LOL-v2 while consuming too much computational resources. Besides, some of these methods require sophisticated training at different stages, making the procedure even more time-consuming and tedious. In this paper, we propose a more accurate, concise, and one-stage Retinex theory based framework, RSEND. RSEND first divides the low-light image into the illumination map and reflectance map, then captures the important details in the illumination map and performs light enhancement. After this step, it refines the enhanced gray-scale image and does element-wise matrix multiplication with the reflectance map. By denoising the output it has from the previous step, it obtains the final result. In all the steps, RSEND utilizes Squeeze and Excitation network to better capture the details. Comprehensive quantitative and qualitative experiments show that our Efficient Retinex model significantly outperforms other CNN-based models, achieving a PSNR improvement ranging from 0.44 dB to 4.2 dB in different datasets and even outperforms transformer-based models in the LOL-v2-real dataset.
Abstract:Neural architecture search (NAS) is an effective method for discovering new convolutional neural network (CNN) architectures. However, existing approaches often require time-consuming training or intensive sampling and evaluations. Zero-shot NAS aims to create training-free proxies for architecture performance prediction. However, existing proxies have suboptimal performance, and are often outperformed by simple metrics such as model parameter counts or the number of floating-point operations. Besides, existing model-based proxies cannot be generalized to new search spaces with unseen new types of operators without golden accuracy truth. A universally optimal proxy remains elusive. We introduce TG-NAS, a novel model-based universal proxy that leverages a transformer-based operator embedding generator and a graph convolution network (GCN) to predict architecture performance. This approach guides neural architecture search across any given search space without the need of retraining. Distinct from other model-based predictor subroutines, TG-NAS itself acts as a zero-cost (ZC) proxy, guiding architecture search with advantages in terms of data independence, cost-effectiveness, and consistency across diverse search spaces. Our experiments showcase its advantages over existing proxies across various NAS benchmarks, suggesting its potential as a foundational element for efficient architecture search. TG-NAS achieves up to 300X improvements in search efficiency compared to previous SOTA ZC proxy methods. Notably, it discovers competitive models with 93.75% CIFAR-10 accuracy on the NAS-Bench-201 space and 74.5% ImageNet top-1 accuracy on the DARTS space.
Abstract:Neural Architecture Search (NAS) effectively discovers new Convolutional Neural Network (CNN) architectures, particularly for accuracy optimization. However, prior approaches often require resource-intensive training on super networks or extensive architecture evaluations, limiting practical applications. To address these challenges, we propose MicroNAS, a hardware-aware zero-shot NAS framework designed for microcontroller units (MCUs) in edge computing. MicroNAS considers target hardware optimality during the search, utilizing specialized performance indicators to identify optimal neural architectures without high computational costs. Compared to previous works, MicroNAS achieves up to 1104x improvement in search efficiency and discovers models with over 3.23x faster MCU inference while maintaining similar accuracy
Abstract:Stock trend analysis has been an influential time-series prediction topic due to its lucrative and inherently chaotic nature. Many models looking to accurately predict the trend of stocks have been based on Recurrent Neural Networks (RNNs). However, due to the limitations of RNNs, such as gradient vanish and long-term dependencies being lost as sequence length increases, in this paper we develop a Transformer based model that uses technical stock data and sentiment analysis to conduct accurate stock trend prediction over long time windows. This paper also introduces a novel dataset containing daily technical stock data and top news headline data spanning almost three years. Stock prediction based solely on technical data can suffer from lag caused by the inability of stock indicators to effectively factor in breaking market news. The use of sentiment analysis on top headlines can help account for unforeseen shifts in market conditions caused by news coverage. We measure the performance of our model against RNNs over sequence lengths spanning 5 business days to 30 business days to mimic different length trading strategies. This reveals an improvement in directional accuracy over RNNs as sequence length is increased, with the largest improvement being close to 18.63% at 30 business days.
Abstract:This paper proposes a novel two-stage framework for emotion recognition using EEG data that outperforms state-of-the-art models while keeping the model size small and computationally efficient. The framework consists of two stages; the first stage involves constructing efficient models named EEGNet, which is inspired by the state-of-the-art efficient architecture and employs inverted-residual blocks that contain depthwise separable convolutional layers. The EEGNet models on both valence and arousal labels achieve the average classification accuracy of 90%, 96.6%, and 99.5% with only 6.4k, 14k, and 25k parameters, respectively. In terms of accuracy and storage cost, these models outperform the previous state-of-the-art result by up to 9%. In the second stage, we binarize these models to further compress them and deploy them easily on edge devices. Binary Neural Networks (BNNs) typically degrade model accuracy. We improve the EEGNet binarized models in this paper by introducing three novel methods and achieving a 20\% improvement over the baseline binary models. The proposed binarized EEGNet models achieve accuracies of 81%, 95%, and 99% with storage costs of 0.11Mbits, 0.28Mbits, and 0.46Mbits, respectively. Those models help deploy a precise human emotion recognition system on the edge environment.