Abstract:This paper introduces the Agentic AI Governance Assurance & Trust Engine (AAGATE), a Kubernetes-native control plane designed to address the unique security and governance challenges posed by autonomous, language-model-driven agents in production. Recognizing the limitations of traditional Application Security (AppSec) tooling for improvisational, machine-speed systems, AAGATE operationalizes the NIST AI Risk Management Framework (AI RMF). It integrates specialized security frameworks for each RMF function: the Agentic AI Threat Modeling MAESTRO framework for Map, a hybrid of OWASP's AIVSS and SEI's SSVC for Measure, and the Cloud Security Alliance's Agentic AI Red Teaming Guide for Manage. By incorporating a zero-trust service mesh, an explainable policy engine, behavioral analytics, and decentralized accountability hooks, AAGATE provides a continuous, verifiable governance solution for agentic AI, enabling safe, accountable, and scalable deployment. The framework is further extended with DIRF for digital identity rights, LPCI defenses for logic-layer injection, and QSAF monitors for cognitive degradation, ensuring governance spans systemic, adversarial, and ethical risks.
Abstract:This paper presents a Unified Security Architecture that fortifies the Agentic Web through a Zero-Trust IAM framework. This architecture is built on a foundation of rich, verifiable agent identities using Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs), with discovery managed by a protocol-agnostic Agent Name Service (ANS). Security is operationalized through a multi-layered Trust Fabric which introduces significant innovations, including Trust-Adaptive Runtime Environments (TARE), Causal Chain Auditing, and Dynamic Identity with Behavioral Attestation. By explicitly linking the LPCI threat to these enhanced architectural countermeasures within a formal security model, we propose a comprehensive and forward-looking blueprint for a secure, resilient, and trustworthy agentic ecosystem. Our formal analysis demonstrates that the proposed architecture provides provable security guarantees against LPCI attacks with bounded probability of success.